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The relation between the symmetry in halo displays and crystal symmetry is investigated for halo displays
that are generated by ensembles of crystals. It is found that, regardless of the symmetry of the constituent
crystals, such displays are always left–right �L–R� symmetric if the crystals are formed from the surround-
ing vapor. L–R symmetry of a halo display implies here that the cross sections for formation of a halo arc
on the left-hand side of the solar vertical and its right-hand side mirror image are equal. This property
leaves room for two types of halo display only: a full symmetric one �mmm-symmetric�, and a partial
symmetric one �mm2-symmetric� in which halo constituents lack their counterparts on the other side of the
parhelic circle. A partial symmetric display can occur only for point halos. Its occurrence implies that a
number of symmetry elements are not present in the shape of the halo-making crystals. These elements
are a center of inversion, any rotatory-inversion axis that is parallel to the crystal spin axis P, a mirror plane
perpendicular to the P axis, and a twofold rotation axis perpendicular to the P axis. A simple conceptual
method is presented to reconstruct possible shapes of the halo-generating crystals from the halos in the
display. The method is illustrated in two examples. Halos that may occur on the Saturnian satellite
Titan are discussed. The possibilities for the Huygens probe to detect these halos during its descent
through the Titan clouds in 2005 are detailed. © 2003 Optical Society of America
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1. Introduction

This paper explores potentials and limitations of
crystal determinations from halo observations. One
motivation is the expanding number of photographi-
cally documented observations of halo arcs resulting
from pyramidal ice crystals1,2 or perhaps from even
more-exotic crystals.3 A second motivation is the
possibility that the Huygens probe4 will detect halos
resulting from exotic crystals during its descent in
January 2005 through the atmosphere of the Satur-
nian satellite Titan.

The paper is divided into three parts. The first
part, Section 2, discusses the relation between sym-
metry in halo displays and symmetry in halo-
generating particles. The second part, Section 3,
gives a recipe for crystal reconstruction from halo
observations. The third part, Section 4, discusses
potential Titan halos.
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This paper can be regarded as an extension of the
halo theory developed earlier5 to halos from crystal
ensembles. In particular, Sections 2 and 3 here can
be regarded as an elaboration of Sect. 3 of Ref. 5.

We consider refraction halos produced by preferen-
tially oriented crystals. By refraction halos we
mean halos that are due to refraction only. Any
refraction halo arises from refraction by a wedge con-
sisting of two faces of a crystal. However, we note
that the conclusions about the relation between halo
symmetry and crystal symmetry have a broader va-
lidity than for refraction halos alone.

We assume in this paper that gravity is the sole
factor that determines the crystal orientation that
will occur. We call this assumption the Gravity Or-
ganizing Principle �GOP�. Among the situations
that satisfy the GOP are crystals falling through still
air or crystals floating at a fixed level in laminarly
flowing air. Among the situations that do not satisfy
the GOP are crystals that are subject to forces that
are not parallel with the gravity vector G or, in cer-
tain cases, crystals that are subject to torques. Ex-
amples of cases in which the GOP is not satisfied are
crystals falling through a flow that has a vertical
gradient in velocity; crystals floating in an undulat-
ing flow or in a flow that is forced around an object;
crystals that are subject to electromagnetic forces;



spinning crystals of certain shapes floating in a ro-
tating flow; or, in certain cases, when non-Newtonian
interactions are present between the crystals and the
flow.

If the GOP is satisfied, then the aerodynamic con-
ditions around a particle A spinning about a certain
axis are identical to those around a particle B that is
its mirror image with respect to a plane parallel to
this axis and that is spinning with the same speed
about this axis, but in the opposite direction.

Situations in nature in which the GOP is entirely
fulfilled are rare. However, in most cases the forces
acting on crystals causing the GOP to be dissatisfied
are negligibly small. This implies that in practice
the GOP often can be considered to be approximately
satisfied.

The orientation of an airborne crystal that starts
from some randomly chosen state will evolve toward
a stable final state. This state can be random ori-
entation or preferential orientation. If the GOP is
satisfied and if the final state is not random orienta-
tion, then the orientations modes that can act as a
final state to the crystal orientation and that can
plausibly occur in reality will normally approxi-
mately satisfy the Spin Vector Assumption �SVA�.
The SVA, formulated in Ref. 5, Eq. �1� for individual
wedges, implies that for any preferentially oriented
crystal there is a unit vector P �i.e., a spin vector� that
is fixed in the crystal and has a constant zenith angle
�. The crystal is otherwise unconstrained. Hence
the crystal is free to rotate about the spin vector P,
and this vector is free to rotate about the vertical,
represented by the zenith vector k.

Reference 5 discusses halo displays from the stand-
point of light scattering by an individual crystal.
The orientation of the crystal is then preassigned in
a mode that satisfies the SVA. It is automatically
assumed that the crystal satisfies the SVA in the time
domain. In considering ensembles of crystals, the
SVA can be satisfied physically as in the single-
crystal approach, or statistically. Satisfying the
SVA physically in the entire ensemble assumes that
all crystals are rotating about their P and all Ps
about the zenith. On the other extreme, satisfying
the SVA statistically assumes that all crystals are
fixed in space but with a distribution of their orien-
tations that is the same as the distribution of the
orientation in the time domain of a crystal that sat-
isfies the SVA physically. Although these two ex-
treme possibilities imply different aerodynamical
conditions around the crystals, they result in identi-
cal halos. At places where the SVA is invoked in
this paper, we assume that it is satisfied physically,
being aerodynamically the more-complicated situa-
tion.

The shape of a refraction halo from a certain halo-
making wedge follows uniquely from five parame-
ters.5 These are the halo pole Pu, which is the spin
vector P expressed in the wedge frame; the zenith
angle � of P; the wedge angle �; the solar elevation �,
and the index of refraction n. The full halo display is
obtained by considering � and n for any crystal in the

swarm, and then Pu for any wedge that can be made
up by the faces of any crystal.

As in Ref. 5, we consider only halos arising from
spin axes vertically �� � 0� or horizontally �� � 90°�
oriented, giving rise to point halos and great circle
halos, respectively. However, the symmetry proper-
ties for point halos discussed in Section 2 apply to
other � � 90° halos also. As before 5 we describe the
halos by the halo sphere, which is a sphere on which
each point represents a value of Pu. The projection
in the x direction of the halo sphere with dots on it
representing the values of the halo poles Pu is called
a pole diagram. The halos discussed here can be
generated by any substance, but to clarify the points
raised we will often refer to examples from hexagonal
ice crystals. Emphasis in the examples is on point
halos.

2. Symmetry in Halo Displays

A. Symmetry Groups of Halos

Full halo symmetry arises if the halo poles for each
wedge have mmm-symmetry—that is, if a halo pole
Pu � �a, b, c� is accompanied by seven other poles, the
full set having coordinates ��a, �b, �c�. For a given
combination of �n,�,�,�� they need not be all non-
empty; in other words, they need not all be capable of
producing a halo. Also, in the generic case there are
combinations of �n, �� in which no halo exists for any
combination of �Pu,�,��, as in ice for � � 120°. Emp-
tiness of halos may mask the full mmm-symmetry of
a halo display. On the other hand, if full symmetry
is present and all halos show up, then the display is
left–right �L–R� symmetric with respect to the solar
vertical while for � � 0 an upper arc �at z 	 0 on the
halo sphere� at either side is accompanied by another
upper arc and two lower arcs �z 
 0�.

The lowest halo symmetry occurs when a halo with
pole Pu � �a, b, c� is accompanied only by a halo with
pole zrot Pu � ��a, �b, c�—which is the halo that
occurs from face interchange of the wedge. The Pu,
zrot Pu combination should always occur, although
the two halos need not be simultaneously nonempty.
In the generic case the shapes of these two halos are
largely unrelated. The combination of halos of poles
Pu and zrot Pu is an elementary halo composite. The
symmetry group of this halo composite is 2.

The Wedge Change Corollary �Ref. 5, Subsection
3.O� indicates the conditions for which a symmetry
higher than 2-symmetry occurs in halo composites.
The Wedge Change Corollary is formulated from the
viewpoint of light scattering from an individual crys-
tal. In generalized form this corollary also applies to
crystal ensembles.

Generalized Wedge Change Corollary
Assume that there are two congruent wedges A1 and
A2 in an ensemble, not necessary on the same crystal.
Assume the SVA to be satisfied. Let the halo that is
due to A1 have poles Pu � �a, b, c� and zrot Pu � ��a,
�b, c�. Ignore additional translation that may be
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needed to map A1 into A2. Then for fixed values of n
and �

i. If at any moment A1 can be transformed into A2
by a rotation of P about the zenith vector k followed
by a rotation of A1 about P, then the halos due to A1
and A2 are identical.

ii. If at any moment A1 can be transformed into
A2 by a rotation of P about k followed by a rotation of
A1 of 180° perpendicular to P and then possibly by a
rotation of A1 about P, then the values of the halo
poles due to A2 are ��a, �b, �c� and �a, b, �c�. The
composite consisting of the union of all halos due to
A1 and A2 is 2�m-symmetric.

iii. If at any moment A1 can be transformed into
A2 by a rotation of P about k followed by a reflection
of A1 in a mirror plane parallel with P, then the
values of the halo poles due to A2 are �a, �b, c� and
��a, b, c�. That is, the halo composite due to A2 and
the halo composite due to A1 are each other’s L–R
reflection with respect to the solar vertical. The
composite consisting of the union of all halos due to
A1 and A2 is mm2-symmetric.

iv. If at any moment A1 can be transformed into
A2 by a rotation of P about k followed by an inversion
of A1 and possibly by a rotation about P, then the
values of the halo poles due to A2 are ��a, b, �c� and
�a, �b, �c�. The composite consisting of the union of
all halos due to A1 and A2 is 222-symmetric.

v. If two out of the conditions ii–iv satisfy in the
ensemble, then the halo composite is mmm-symmetric.

Figure 1 shows the shapes of composites of point
halos of the five possible halo symmetry groups, to-
gether with the arrangements of the poles on the halo
sphere. The first and fourth columns of Table 1 give,
for crystals with orientation preassigned in a mode
allowed by the SVA, the link between symmetry of
crystals and the symmetry group of the halo compos-
ites.

B. Wedge-, Orientation-, Crystal-, and Ensemble-Induced
Halo Symmetry

The conditions of the Generalized Wedge Change
Corollary can be satisfied in four different ways:
from the symmetry of the individual wedges, from the

Fig. 1. The five halo symmetry groups. Each panel shows the pole diagram associated to a halo symmetry group, the resulting display
of point halos, and a description of the crystal symmetry conditions that are required for generating these halo symmetries. P is the
crystal spin axis. According to the Crystal Orientation Corollary, only halo symmetry groups that result in L–R symmetric composites
�mmm, mm2� can arise from crystals that are formed from the surrounding vapor. They are depicted in the upper row, which are panels
a and b. The three halo symmetry groups that lack L–R symmetry �2�m, 222, 2-symmetric; panels c–e� are not expected to occur in
natural circumstances. See Table 1 for more details. The depicted halos are for wedge angle 60°, refraction index 1.31, solar elevation
40°. The composites consist of the point halo with Pu � �1�4�2,1�2�3,�1�4�2�  B�30°,45°�, together with the halos from the induced
poles according to the mmm, mm2, 2�m, 222, and 2 symmetry. These halos are the 22° equivalents of the 46° Parry infralateral and
supralateral arcs. Solid circles in the pole diagrams refer to halo poles that are on the front hemisphere of the halo sphere; open circles,
to halo poles on the rear hemisphere. In a mm2-symmetric halo display that consist of halo composites from several wedges, the missing
halos may be the upper arcs for a given halo-making wedge �like the situation in panel b�, whereas for other halo-making wedges, the
missing arcs may be the lower arcs instead. Similar arguments hold for 2�m, 222, and 2-symmetric halo composites.
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wedge- or crystal orientations, from the crystal sym-
metry, and from the ensemble. We treat these cases
subsequently.

Any wedge has the symmetry of the mm2 point
group: a mirror plane parallel to the bisector plane
of the wedge, a second mirror plane perpendicular to
the first one and to the edge of the wedge, and a
twofold rotation axis in the intersection of these
planes. An individual wedge is able to satisfy con-
dition ii or iii. If this happens, then the halos from
this wedge will bear the symmetry corresponding to ii
or iii, irregardless of the symmetry of the halo-
generating crystals. We call this halo symmetry
wedge induced. In the case of wedge-induced sym-
metry, the halo poles are on the coordinate planes x �
0, y � 0, or z � 0 of the halo sphere. Conversely, if
the poles have values x � 0, y � 0, or z � 0, then the
halo symmetry is wedge induced. The occurrence of
wedge-induced symmetry can obscure information
about the �absence of � symmetry in the halo-
generating crystals.

An example in which wedge-induced symmetry
may occur is in halos from a crystal consisting of a
scalene triangular basal face and three pyramidal
faces that all three make the same angle with the
basal face. This crystal has no symmetry element.
However, if P is perpendicular to the basal face, then
it is parallel to a mirror plane of each pair of faces of
the crystal. Consequently, despite of lack of symme-
try in the crystal, the halo display of this crystal is
mm2 symmetric. The poles Pu of the halos are on
the x � 0 plane or the y � 0 plane of the halo sphere.

Orientation-induced symmetry can happen as con-
sequence of the SVA. An individual crystal or wedge
may then satisfy one of conditions ii–iv of the Gener-
alized Wedge Change Corollary with respect to its
position after a 180° rotation about P. An example
is a wedge that creates the 22° parhelion. A wedge
has no center of symmetry, but if the spin axis P is
parallel to its edge, then the wedge will assume after
a while a position that is its 180° rotation about its
edge. The wedge in its new position transforms to
the wedge in its original position by an inversion
through a center of symmetry. In this example, con-
dition iv is satisfied in the time domain rather than at

any fixed moment. If one assumes the SVA to be
satisfied statistically rather than physically, then
condition iv is satisfied in space.

A second, more important, example is the fact that
for great circle halos �� � 90°�, condition ii is always
fulfilled by orientation induction. Consider a crystal
at a certain moment and then the same crystal after its
P has rotated by 180° about k. In the second situa-
tion, the crystal has also rotated by some angle about
P. Then its original position can be obtained by a
condition ii satisfying procedure: a 180° rotation per-
pendicular to P followed by a rotation about P. Be-
cause of � � 90°, this procedure is always possible.
This implies that great circle halo composites exhibit
at least orientation-induced 2�m-symmetry. The
only other symmetry group that is possible for great
circle halo composites is the full mmm-symmetry �see
Table 1�.

Crystal-induced symmetry may arise if an entire
crystal �or polyhedron� maps to itself by one of the
symmetry operations described in conditions ii–iv of
the Generalized Wedge Change Corollary. The halo
composite is

• 2�m-symmetric if the crystal maps to itself by a
twofold rotation about an axis perpendicular to P.

• mm2-symmetric if the crystal is its own mirror
image across a plane parallel with P.

• 222-symmetric if the crystal maps to itself by an
inversion, or by an inversion followed by a rotation
about P. This includes reflection about a plane per-
pendicular to P and the operation of any rotatory-
inversion axis parallel with P.

• mmm-symmetric if the crystal has two of the
above properties.

Ensemble-induced symmetry arises if a crystal en-
semble consists of two populations that are related
via an operation satisfying the Generalize Wedge
Change Corollary. A trivial example is an ensemble
consisting of congruent crystals that are shaped like
regular pyramids. If they were all oriented in the
same way, with the pyramid axis vertical and the
basal face down, then the ensemble satisfies only
condition iii and the halo composite is mm2-

Table 1. Symmetry of Crystals and Symmetry in Halo Displaysa

Crystal Symmetry Condition

Point-Halo
Symmetry Group

Great Circle
Halo Symmetry Group

Preassn. Polyh. Crystal Preassn Polyh. Crystal

1 None out of 2–5 2 2 mm2 2�m 2�m mmm
2 Mirror plane inclined to P, or inversion axis inclined to P 2 mm2 mm2 2�m mmm mmm
3 two-fold axis �P 2�m 2�m mmm 2�m 2�m mmm
4 Mirror plane �P mm2 mm2 mm2 mmm mmm mmm
5 Inversion center, or inversion axis �P, or mirror plane �P 222 mmm mmm mmm mmm mmm

aPreassn. refers to halos from polyhedrons �or crystals� whose orientation is preassigned in a mode allowed by the SVA. Polyh. refers
to halos from congruent polyhedrons that preferentially orient from random initial conditions. Crystal refers to halos from an ensemble
of preferentially oriented crystals that are formed from the surrounding vapor. If two crystal symmetry conditions are fulfilled, and if they
generate nonidentical halo symmetry groups of symmetry higher than 2, then the display is mmm-symmetric. P is the crystal spin axis.
The table assumes that the Gravity Organizing Principle �GOP� is satisfied.
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symmetric. However, if half the crystals are floating
upside down �hence pyramidal axis vertical but basal
face up�, then condition ii �and iv� is satisfied by en-
semble induction. Because of condition v, the halo
composite is mmm-symmetric.

C. Crystal Orientations in Ensembles

We consider two situations that create ensemble-
induced symmetry in halos. They are called here the
Polyhedron Orientation Theorem and the Crystal Ori-
entation Theorem. Both theorems assume that the
Gravity Organizing Principle �GOP; see Section 1� is
satisfied and that the orientations of the particles in
the ensemble have evolved to stable final states.

The Polyhedron Orientation Theorem applies to
floating polyhedrons that need not be formed from
the surrounding vapor, but assumes random initial
conditions when they became airborne. It applies,
e.g., to a handful of crystals thrown into the air, or to
artificially manufactured polyhedrons that are
thrown into the air. The Polyhedron Orientation
Theorem applies to a more generic situation than
that of natural crystals formed from the surrounding
vapor. Nevertheless, the Polyhedron Orientation
Theorem considerably restricts the possibilities for
formation of low-symmetric halo displays compared
with the situation in which the orientation of crystals
is preassigned in a mode allowed by the SVA. The
consequences of the Polyhedron Orientation Theorem
for halo formation are formulated in the Polyhedron
Orientation Corollary.

The Crystal Orientation Theorem applies to float-
ing crystals that are formed from the surrounding
vapor. The Crystal Orientation Theorem can be
considered to apply to all cases in which crystals are
formed in planetary atmospheres. The Crystal Ori-
entation Theorem restricts the possibilities for for-
mation of low-symmetric halo displays even more
than the Polyhedron Orientation Theorem. The
consequences of the Crystal Orientation Theorem for
halo formation are formulated in the Crystal Orien-
tation Corollary. It should be emphasized that the
Polyhedron Orientation Corollary as well as the
Crystal Orientation Corollary apply to any kind of
halo, instead of just to refraction halos.

As above, in the formulations that follow now, we
ignore additional translations that may be needed to
map one crystal shape into another.

Polyhedron Orientation Theorem
Let the elements of an ensemble of preferentially
oriented congruent polyhedrons originate from ran-
dom initial conditions when they became airborne.
Let the polyhedrons be their own mirror image across
some plane, or let the polyhedrons be their own in-
version, or let the polyhedrons map to themselves by
an n-fold rotatory-inversion axis. Then, in the en-
semble, for each polyhedron A with spin axis P fixed
in it in a direction that is not necessary parallel to a
symmetry axis of A, there exists a polyhedron B that
is the mirror image of A across a plane that is �P and
where P is the spin axis of B. The number of poly-

hedrons with an orientation and spin axis that cor-
respond to that of polyhedron A and with the zenith
angle of P fixed at a given value �o is equal to the
number of polyhedrons with an orientation and spin
axis that corresponds to that of polyhedron B and
with the zenith angle of P fixed at the same value �o.

Justification of the Polyhedron Orientation Theorem

a. If a polyhedron satisfies one of the conditions of
the Polyhedron Orientation Theorem, then there ex-
ists a rotation that transforms the polyhedron A into
its mirror image B with respect to a plane �P.

Proof: A 180° rotation about an axis perpendic-
ular to P and to the rotatory-inversion axis �which
includes the normal of a mirror plane�, followed by a
rotation about the rotatory-inversion axis, maps such
a polyhedron into itself.

b. If the GOP is satisfied, then the flow conditions
around a polyhedron A spinning in a plus direction
about P while P has a fixed zenith angle and rotates in
a plus direction about the zenith vector k are equal to
that of its mirror-image polyhedron B spinning in the
minus direction about P if P has the same value for the
zenith angle and rotates in a minus direction about k.
This implies that there is no mechanism to cause a
preference for a polyhedron to end up in an orientation
that corresponds to shape A instead of in an orienta-
tion that corresponds to shape B, and vice versa.

Polyhedron Orientation Corollary
Let the elements of an ensemble of preferentially
oriented congruent polyhedrons originate from ran-
dom initial conditions when they became airborne.
Let the polyhedrons be their own mirror image across
some plane, or let the polyhedrons be their own in-
version, or let the polyhedrons map to themselves by
an n-fold rotatory-inversion axis. Then, for the en-
semble, the scattering cross sections for formation of
a halo arc and its mirror image with respect to the
solar vertical are equal.

Examples

1. Consider an ensemble of congruent regular
hexagonal ice crystals, each having one basal face at
one end and a pyramidal face instead of a basal face
on the other end. In Tape’s1 face notation, the eight
faces of the crystals are prism faces 3–8, basal face 2,
and pyramidal face 14. Let a number of crystals to
have assumed the Parry orientation with prism face
3 on top. Then, according to the Polyhedron Orien-
tation Theorem, there will be an equal number of
crystals in the ensemble that also have assumed the
Parry orientation but now with prism face 5 on top.
In accordance with the Polyhedron Orientation Cor-
ollary, the halo display from the ensemble of these
two crystals will be L–R symmetric.

2. An orthorhombic disphenoid does not satisfy
the conditions of the Polyhedron Orientation Theo-
rem. An ensemble of congruent orthorhombic dis-
phenoids will produce halos that are not L–R
symmetric.
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Crystal Orientation Theorem
Let an ensemble of preferentially oriented crystals be
formed from the surrounding vapor. Then, in the
ensemble, for each crystal A with spin axis P fixed in
it, there exists a crystal B that is the mirror image of
A across a plane �P and where P is the spin axis of B.
The number and the size distribution of crystals of
shape and spin axis like A and with the zenith angle
of P fixed at a given value �o are equal to the number
and the size distribution of crystals of shape and spin
axis like B with the zenith angle of P fixed at the
same value �o.

Justification of the Crystal Orientation Theorem

a. Any crystallographic system allows for the for-
mation of two crystals A and C that are each other’s
inversion.

b. A 180° rotation of crystal C about an axis per-
pendicular to P transforms the crystal into a crystal
B, which is the mirror image of crystal A across a
plane �P.

Proof: This follows from the identity xrot ��N� �
xref N.

c. If the GOP is satisfied, then the flow conditions
around a crystal A spinning in a plus direction about
P while P has a fixed zenith angle and rotates in a
plus direction about the zenith vector k are equal to
that of its mirror-image crystal B spinning in the
minus direction about P if P has the same value for
the zenith angle and rotates in a minus direction
about k. This implies that there is no mechanism to
cause preference for formation of a crystal that is
shaped like crystal A and in an orientation corre-
sponding to crystal A, instead of formation of a crystal
that is shaped like crystal B and in an orientation
that corresponds to crystal B, and vice versa.

Crystal Orientation Corollary
Let an ensemble of preferentially oriented crystals be
formed from the surrounding vapor. Then, for this
ensemble, the scattering cross sections for formation
of a halo arc and its mirror image with respect to the
solar vertical are equal.

Example

1. If an atmosphere allows for the formation of
orthorhombic disphenoidal crystals, it allows with
the same probability to orthorhombic disphenoidal
crystals that are the mirror image across a plane �P.
The ensemble of disphenoidal crystals will produce
halos that are L–R symmetric. The same applies to,
e.g., crystals shaped like asymmetric tetrahedra.

Consequences of the Crystal Orientation Corollary

1. Assume that the left and right components of a
halo display from a homogeneous cloud of naturally
formed crystals are not of equal brightness. Then
the number of sunlit crystals in the line of sight of a
given elevation is dependent on azimuth, or the light-

ing conditions of the crystals generating the two com-
ponents of the halo are not equal.

2. Halo displays from crystals that are formed in
an atmosphere are always L–R symmetric. Point
halo displays may be either mmm-symmetric or
mm2-symmetric. The latter requires the crystals to
lack an inversion center, a rotatory-inversion axis �P,
a mirror plane �P, and a twofold axis �P. Great
circle halo displays are always mmm-symmetric.

3. Halo displays of 2, 222, or 2�m-symmetry are
not expected to occur in nature.

The possibilities of halo symmetry for preassigned
crystal orientation, according to the Polyhedral Ori-
entation Corollary and according to the Crystal Ori-
entation Corollary, are included in Table 1.

D. Additional Property

Definition. Let the faces f1 and f2 on a crystal form
a halo-making wedge �f1, f2�. If the full symmetry of
the crystallographic system to which the crystal be-
longs allows for a transformation from f1 to f2, then
the wedge �f1, f2� is called homoformic; otherwise, the
wedge �f1, f2� is called heteroformic.

Poles of Halos Resulting from Homoformic and
Heteroformic Wedges
Let a crystal belong to a crystallographic system
other than the cubic system. Let the crystal main
axis be parallel to P. Then

1. Halos poles resulting from homoformic wedges
on the crystal are either on the equator of the halo
sphere �z � 0� or on x � 0. The symmetry of all
resulting halos is wedge induced.

2. Halos poles resulting from heteroformic
wedges on the crystal are not on z � 0 or on x � 0.

Examples of homoformic wedges in ice crystals are
those consisting of two prism faces �22° halos� or of
two pyramidal faces �e.g., 18° or 35° halos�. The
wedges that make the 22° halos have both faces from
the �1,0,�1,0� form of the full hexagonal symmetry;
the wedges that make the 18° and 35° halos have both
faces from the �1,0,�1,1� form. If ice is plate ori-
ented, then the 22° and 35° halos poles are on x � 0.
The 18° halos, which arise from pyramidal faces at
different ends of the crystal, have their poles at z � 0.

Examples of heteroformic wedges in ice crystals are
those consisting of one prism face and one pyramidal
face �24° halos�, or consisting of one prism face and
one basal face �46° halos�. If crystals are plate ori-
ented, halo poles resulting from heteroformic wedges
do not appear at x � 0 or z � 0. However, as the
circumzenith arc demonstrates, they may appear at
y � 0.

3. Crystal Reconstruction from Pole Diagrams:
Method and Two Examples

A. Method

Assume that there is a halo display, and assume that
the poles Pu of the halos can be inferred �e.g, with the
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techniques of Ref. 5, Fig. 18� and that the angles � of
the halo-making wedges are known. Then it is pos-
sible to construct minimum configurations for the
halo-generating crystals by cutting and pasting the
wedges together.

The method works as follows:

1. Define a coordinate system �x, y, z� with z�P �P
is the spin vector�. The sphere with radius unity is
called the face normal sphere.

2. Select a halo pole Pu. Determine on the halo
sphere the angles �1, �2 between Pu and the face
normals N1, N2 of the halo-generating wedge.

3. Take �1 � 0, 180°. Then define the y plane of
the face normal sphere as the plane �P, N1�. Project
the positions of N1 and N2 onto the face normal
sphere. The colatitude and longitude of N1 are ��1,
0�; that of N2 are ��2, ��.

4. Select a second halo pole Pu. Determine the
angles �3 and �4 between Pu and the face normals N3
and N4 of the halo-generating wedge.

5. Investigate whether �3 or �4 is equal to the
previously found colatitudes �1 or �2. Assume that
such an equality is found; e.g., �3 � �2. Then take
N3 � N2 and determine the position of N4 on the face
normal sphere.

6. Proceed with the next halo pole.

This procedure is in fact a trial-and-error method.
Several solutions are possible. The following should
be kept in mind:

• If various solutions are found, a selection be-
tween them may be performed on the basis of the

argument that some solutions to the crystal configu-
ration are expected to generate halos that are not
observed.

• However, such consistency arguments are usu-
ally only supporting and not conclusive. See, e.g.,
the example in ice halos, in which Parry arcs are
usually observed with no Parry supralateral arcs.

• There exists a risk that an unrealistic crystal
configuration is constructed, being a combination of
the same crystal in two orientation modes. This
may happen if the colatitude � of a face of a halo-
generating wedge of the crystal in one orientation
mode is identical with, or close to, the colatitude of a
face of a congruent or almost-congruent wedge while
the crystal is in the second orientation mode.

• Since the crystal faces may form wedges that
produce no halos, or may form more than one wedge
producing the same halo �e.g., because of the presence
of a rotation symmetry axis�, the reconstructed crys-
tal configurations will usually have fewer faces than
the actual crystals.

• Any crystal reconstruction method is more pow-
erful for point halos and for low solar elevations.
One reason for this is that in the reversed cases the
halos from different poles are apt to be indistinguish-
able from one another. Second, for decreasing solar
elevations, fewer halos tend to be empty. See Ref. 5,
Figs. 36 and 42.

The strength and limitations of this cut-and-paste
method are illustrated in the two examples that fol-
low.

Fig. 2. Halo poles for point halos in the Tape display. The radius of the associated circular halo is indicated at each pole. On the y �
0 plane are the poles of the circumzenith arc �CZ� and the upper suncave Parry arc �USCP�. The �0, �1,0� poles are those of the left and
the right parahelia �LPH and RPH�. The remaining poles are those of the left and the right Parry supralateral arcs �LPS and RPS� and
the left and the right Parry infralateral arcs �LPI and RPI�. Around the halo sphere are four solutions to the minimum configuration of
the halo-making crystals, as inferred from the occurrence of the halos �spin axis P vertical; crystal main axis normal to the paper�. Solid
circles in the crystal diagrams refer to face normals pointing to the front hemisphere of the diagrams or that are parallel to the paper; open
circles, to face normals pointing to the rear hemisphere. The face numbering is according to Tape’s1 system. The Tape display is on the
cover of his book1; a simulation of the display is on the back cover.
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B. Example 1: Tape Display �2 January 1990�

This display was observed at U.S. Amundsen–Scott
South Pole Station by Walter Tape. A picture is on
the cover and in Fig. 2-11 of Tape’s book1; simulations
are shown in Fig. 2-12 and on the back cover. We
consider the point halos in this display. They have
been successfully explained1 from halo scattering by
an ensemble of hexagonal prismatic crystals with
basal ends, partly in plate orientation and partly in
Parry orientation. Figure 2 �previous page� shows
the poles of the point halos on the halo sphere. Vis-
ible from wedge angle 60° are the upper suncave
Parry arc �USCP� and the left and right 22° parhelia
�LPH, RPH�. From 90° wedges, the circumzenith
arc �CZ�, and the left and the right Parry supralateral
arcs �LPS, RPS� and the left and the right Parry
infralateral arcs �LPI, RPI� are visible.

We now reanalyze the subset of the display con-
sisting of point halos by our method. In the expla-
nation of the reconstruction of crystal configurations
that follows now, we denote the crystal faces accord-
ing to Tape’s1 system: The basal faces are 1 and 2;
the prism faces are 3–8, where in Parry orientation
face 3 is on top. In finding the solutions depicted in
Fig. 2, the starting point of all reconstructions is the
CZ, whose pole relates face 3 to face 1. A compact
notation for this is 1-�CZ�-3.

Solution 1, left �Fig. 2�, follows from the string
1-�CZ�-3-�USCP�-5-�LPI�-1-�RPS�-8 and adds to this a
peculiar face A by string 1-�LPH�-A �or equivalently,
by string 1-�RPH�-A�, in which face A gives the im-

pression of being part of a pyramidal cap. Solution
1, right, follows from similar strings following the
halos on the other side of the solar vertical, i.e.,
1-�CZ�-3-�USCP�-7-�RPI�-1-�LPS�-4 and 1-�RPH�-B.
Solution 2 combines the two crystals of Solution 1
into one single crystal. From the Crystal Orienta-
tion Theorem it follows that no preference can be
inferred from the halos between Solutions 1 and 2.
Note that according to this theorem the two crystals
of the dual-crystal Solution 1 should relate by a re-
fection across a mirror plane parallel to P, as is in-
deed the case. Likewise, the single-crystal Solution
2 should bear a mirror plane parallel to P, which is
also true.

Solution 3 follows similarly from the strings 1-�CZ�-
3-�USCP�-7-�RPI�-1-�RPS�-8 and 1-�CZ�-3-�USCP�-5-
�RPI�-1-�LPS�-8, together with the two short strings
leading to faces A and B. Combining the two crys-
tals of Solution 3 into one single-crystal solution leads
to either Solution 2 or Solution 4. Under the Crystal
Orientation Theorem, Solution 4 is indeed allowed as
an alternate single-crystal solution, as it also has a
mirror plane parallel with P. However, contrary to
Solution 2, additional faces are required for complet-
ing its shape in a closed three-dimensional body.

As mentioned, there is no a priori preference to
Solutions 1–4, although Solution 2 comes closest to a
crystal with hexagonal symmetry. This single-
crystal solution seems most attractive, although
there is nothing more than common sense to support
this preference. However, even Solution 2 is unre-

Fig. 3. Computer simulation of the Sturm display. The halos result from pyramidal ice crystals. The innermost circular halo is the 9°
halo; the most prominent circular halo is the 22° halo. The mm2-symmetry of the display is apparent from the fact that some halo arcs
�e.g., 9°, 24°� lack their counterparts on the other side of the parhelic circle. The simulation is shown in Fig. 10-19 of Ref. 1. A photo-
graph of the display is shown in Ref. 1, Fig. 10-17. The pole diagram of the point halos in the display is shown in Fig. 4.
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alistic, as it actually invokes a pseudopyramidal crys-
tal by combining Parry- and plate-oriented crystals
by means of the CZ, which both orientations are ca-
pable of generating. The real solution is of course a
proper decomposition of the single-crystal solutions
into two crystals such that it removes the crystallo-
graphic impossible faces A and B from the Parry-
oriented crystal. These faces A and B then become
faces 3 and 5 from the second population, which is a
plate-oriented crystal.

This example illustrates that crystals may indeed
be reconstructed, but often only partially. Some
faces may be missing. Also, the solutions are often
not unique, whereas in this example readily unreal-
istic crystals are invoked by combination of halos
from different orientation modes. It should be ac-
knowledged, however, that this problem holds for
computer simulations as well.

C. Example 2: Sturm Display �11 July 1987�

The Sturm halo was observed by Klaus Sturm on the
German Georg von Neumayer station in the Antarc-
tic. A picture is shown in Ref. 1, Fig. 10-17; a com-
puter simulation is shown in Fig. 10-19 of Ref. 1 and
reproduced here as Fig. 3. The halo display shows
point halos associated to the 9°, 18°, 22°, 23°, 24°, and
35° halos. The display has been successfully inter-
preted from plate-oriented prismatic ice crystals with
basal as well as pyramidal faces at the ends.1 In
accordance with the mm2-symmetry of the display,
the explaining crystals were thought to have devel-
oped the pyramidal faces at one end only, which is the
downward end.

Figure 4 shows the halo poles of the Sturm display,
together with a single-crystal solution to the recon-
struction of the minimum configuration of a crystal
from the halo-making wedges. The minimum con-
figuration of the crystal was constructed under the
assumption that all halo-making wedge angles were
precisely known. The configuration can be found
from two strings. The first one is 1-�23°�-28-�24°�-4-
�22°�-6-�24°�-28-�35°�-26-�18°�-15-�18°�-24; the second
one is 28-�9°�-5. The notation in both strings is such
that the halo angles are in brackets; the face numbers
are not. No halos are repetitively generated in this
scheme. Because left and right 18° halos require a
different wedge, this halo appears twice in the
strings. The same is true for the 24° halos.

The crystal reproduced in Fig. 4 makes all the halos
shown in the Sturm picture. Hence this crystal is
sufficient to explain all observed features. It is
tempting to apply a sixfold rotation symmetry oper-
ation to this crystal, which would transform the
minimum-configuration crystal into a more realistic
one, but there exists no empirical justification for this
addition. Note that even if all wedges in the result-
ing sixfold symmetric crystal made a halo �including,
e.g., the � � 120° wedges�, the manifestation of this
crystal symmetry would remain hidden as long as the
sixfold axis is parallel with the spin axis P. If the
crystal assumed another orientation, e.g., the Parry
orientation as in the previous example, then the ex-
istence of more faces could be inferred from the dis-
play. This highlights a main limitation of any
reconstruction of crystals from the appearance of ha-
los. The other limitation is, as in the previous ex-
ample, that it usually remains possible to express the
solution in terms of two or more crystals, whose union
is equal to the depicted crystal, and that there exists
no way to decide what the real situation is. And
again, this problem is a general one in any recon-
struction method of halo-generating crystals, includ-
ing Monte Carlo methods.

4. Titan Halos

A. Methane Halos and Ethane Halos

Within the current standard models of the Titan at-
mosphere4 there may be room for the presence of
crystals of methane �CH4� and perhaps of ethane
�C2H6�. Crystals of these compounds are transpar-
ent. If the sizes of the Titan crystals are larger than
�20 �m and if the crystals are directly lit by the Sun,
halos will appear in the Titan sky. Then there exists
a possibility that the Huygens probe will detect these
halos during a certain stage of its descent through the
Titan atmosphere on 14 January 2005. The solar
elevation at the descent is 40° � 10° �Ref. 4�, and this
number remained unchanged after the reschedule in
2001 of the Huygens mission.6 Figure 5 shows the
shapes of mmm-symmetric point-halo composites for
solar elevation 40°. In combination with the pole
diagram �Fig. 6� of potential Titan halos of methane

Fig. 4. Halo poles for point halos in the Sturm display �Fig. 3�.
The radius of the associated circular halo is indicated at each pole.
The small diagram is a single-crystal solution to the minimum
configuration of the halo-making crystals, as inferred from the
occurrence of the halos �spin axis P and crystal main axis normal
to the paper�. Solid circles in the crystal diagram refer to face
normals pointing to the front hemisphere of the diagrams or that
are parallel to the paper; open circles, to face normals pointing to
the rear hemisphere. The face numbering is according to Tape’s1

system. Faces in brackets cannot be inferred from the display.
The Sturm halo is shown in Fig. 10-17 of Tape’s book.1
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or ethane, discussed below, it visualizes how point-
halo displays arising from Titan crystals could be
approximately shaped.

Methane �mp 91K, bp 109K �Ref. 7�� belongs to the
cubic system; the estimated index of refraction at the
melting point is 1.32.8 Likely simple crystal shapes
are cubes, octahedrons, and square pyramids or,
more generally, crystallographic combinations of a
cube and an octahedron. Halo-making wedge an-
gles � in these combinations are 54.7° �one octahedral
face and one cubic face�, 70.5° �two octahedral faces�,
and 90° �two cubic faces�. These wedge angles cor-
respond to halo angles of 20°, 29°, and 48°, respec-
tively. Apart from random orientation, a plausible
orientation mode for these crystals is one with the
crystallographic main axis vertical �i.e., a cubic face
horizontal�. This orientation leads for all wedges to
point halos with poles that are on the y � 0 plane,
which are referred to as Parroid arcs9 because of the

similarity in properties with the ice-crystal Parry
arcs. A comparison of Fig. 6 with the pole diagram
of the 22° and 46° ice crystal halos �Ref. 5, Figs. 55
and 59� indicates a great similarity in shapes be-
tween the 20° methane Parroid arcs and the ice sun-
cave Parry arcs, between the 29° methane Parroid
arcs and the ice sunvex Parry arcs, and between the
48° methane Parroid arcs and the 46° ice cir-
cumzenith�horizon arcs. The formation of the
methane Parroid arcs on Titan can occur from meth-
ane crystals of the simplest shape, i.e., square pyra-
mids �20° and 29° halos� and cubes �48° halos�.

In addition to the set of methane Parroid arcs, Fig.
6 indicate 48° methane parhelia �Pu � �0, �1,0��, 29°
methane halos with poles on the z � 0 plane and 20°
methane halos with poles that are not on a coordinate
plane of the halo sphere. The simplest crystal shape
to make the 48° methane parhelia is a cube. The 29°
halos at z � 0 requires an octahedron. The forma-

Fig. 5. Atlas for mmm-symmetric point-halo composites for solar elevation 40°. The wedge angle � is 60°; refraction index is n � 1.31.
Because the shapes of the halos are only weakly dependent on � and n, the atlas gives a fair impression how point halos associated to a
certain halo pole are approximately shaped. The approximate shapes of Titan refraction halos that may be detected during the descent
of the Huygens probe in Jan 2005 can be found by looking at the spots where the Titan halo poles �Fig. 6� appear. The coordinate �
indicates the Bravais colatitudes on the halo sphere.
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tion of the 20° halos outside the coordinate planes
requires a more complicated combination of a cube
and octahedron than a square pyramid, namely, oc-
tahedrons with truncations at the horizontal vertices
so that vertical cubic faces are present. Intuitively
the formation of such truncated crystals seems much
less likely than that of square pyramids or that of
octahedrons truncated at the upper or lower vertices.
If that conjecture is correct, then the four 20° halos
with poles off the coordinate planes �Fig. 6� can effec-
tively be ruled out as Titan halo candidates.

Ethane �mp 90K, bp 185K �Ref. 7�� belongs, as does
ice, to the hexagonal system �Refs. 7 and 10; see
however Ref. 11�. Therefore the crystal shapes and
orientation modes of floating ethane crystals are
probably similar to those of terrestrial ice. The es-
timated8 refractive index of solid ethane is 1.4410; the
crystallographic axial ratio c�a is 1.84.10 The halo-
making wedge angle in a hexagonal ethane prism
�� � 60°� generates 32° halos, being the analogs to the
22° ice crystal halos. Randomly oriented ethane
would result in a circular 32° halo, plate-oriented
ethane crystals to 32° parhelia. For solar elevation

40°, these 32° parhelia would appear at 55° azi-
muthal distance from the Sun. Parry-oriented
ethane would give rise to Parroid arcs that are sim-
ilar to the Parry arcs in ice. Great circle 32° ethane
halos from column orientation would be analogous to
the upper or lower tangent arcs in ice. As the index
of refraction of ethane exceeds �2, the analogs of the
46° ice halos �� � 90°� would not appear from ethane.
The two ethane halos poles due to plate �column�
orientation are included in Fig. 6; those from the
�more improbable� Parry orientation are not.

Like ice, ethane crystals may develop pyramidal
faces; such crystals would give rise to 11°, 27°, 25°,
36°, 35°, and 50° halos. They are the analogs of the
9°, 18°, 20°, 23°, 24°, and 35° ice halos, in that order.

Fig. 6. Poles of Titan halos resulting from truncated octahedrons
of methane �M� and from hexagonal crystals of ethane �E� with
basal faces. The truncations apply to all vertices of the octahe-
drons. It is assumed that the methane and ethane crystal main
axes are vertically oriented. Halos that are empty for solar ele-
vation 40° are in brackets. However, for these halo angles, circu-
lar halos �not depictable in the pole diagrams� are always possible
if the crystal orient randomly. The M 48° halos are due to two
cubic faces, the M 29° halos to two octahedral faces, and the M 20°
halos to one cubic and one octahedral face. Halos that are within
the reach of the Huygens imagers are marked with *. These are
the upper 20° methane Parroid arc and the lower 29° methane
Parroid arc. The 32° ethane parhelia and the 29° methane halos
from poles with z � 0, marked with **, are out of reach of the
imagers, but their subhorizon counterparts �viz. the 32° ethane
subparhelia and two halos that are shaped as the reflections of the
two 29° halos in question at a horizontal mirror plane� are within
reach. Figure 5 visualizes how an mmm-symmetric point halo
display associated to a certain halo pole is approximately shaped.
Figures 7–10 give a Monte Carlo simulation of a Titan halo display.

Fig. 7. Halo display that may occur in the Titan atmosphere
during the decent of the Huygens probe. In this Monte Carlo
ray-tracing simulation, there are four populations of methane crys-
tals: square pyramids with cubic face up and with cubic face
down, randomly oriented equidimensional cube-octahedrons with
all vertices truncated, and equidimensional cube-octahedrons with
the fourfold rotation symmetry axis vertical and all vertices trun-
cated. Additionally, there are two ethane crystal populations:
plate oriented and randomly oriented hexagonal crystals with
basal ends. The standard deviation of the tilts of axes of the
preferentially oriented crystals is 1°. The figure is uplooking with
a field of view of 180°: The zenith is in the center, and the circle
that surrounds the simulation is the horizon. The symbol S
marks the position of the Sun, which is at 40° elevation. The
prominent circular halo is the 20° methane circular halo; the three
other possible circular halos are barely visible. Another choice for
the populations or for the crystal parameters would result in dif-
ferent relative intensities of the various halos in the display. Fig.
10 is a legend to the refraction halos. The three above-horizon
regions that are in the fields of view of the Huygens imagers consist
of a 6° wide vertical band through the Sun extending from 15° till
65° above the horizon; a similar vertical band straight opposite to
the Sun; and the entire region between the horizon and a height of
6°.
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Given the extreme rarity of halos resulting from py-
ramidal ice crystals on Earth, it seems highly improb-
ably that the Huygens probe would happen to detect
their ethane counterparts. A casual look at Fig. 5 in
combination with the pole diagrams published in Ref.
5 �Figs. 52–59� tells how mmm-symmetric displays of
these arcs would be approximately shaped.

In light of the complexity of the chemistry of the
Titan atmosphere, there may be room for halo forma-
tion from crystalline compounds whose compositions
have yet to be guessed. If such a surprise would
happen, analysis of these halos as outlined in the
previous paragraph may provide a clue to the nature
of such crystals.

B. Huygens Prospects for Halo Detection

The prospects for detection of refraction halos during
the Huygens descent are not in all aspects optimal.
First, all methane 48° halos of Fig. 6 are empty for
solar elevation 40°, which implies that no 48° point
halos from methane can be generated at this solar
elevation. Second, although the 32° ethane parhe-
lia, the 29° methane halos from z � 0 poles, and the
four 20° methane halos from the poles off the coordi-
nate planes are potentially within the reach of the
Huygens solar aureole �SA� imager, no pictures of
these halos will be obtained. The reason for this is
that these halos appear on either sides of the solar
vertical, whereas the SA imager, having a horizontal

field of view of only 6°, is scheduled to take only
sunward and antisunward pictures.12 Similarly,
the lower 20° methane Parroid arc would be escape
detection, because for solar elevation 40° this halo
consists of two disconnected segments and has no
part that is straight below the Sun. Third, none of
the Huygens imagers cover heights above the horizon
between 6° and 15° or heights exceeding 65°, imply-
ing for solar elevation 40° an observational gap in
scattering angle between 25° and 34°. This rules
out detection of the 29° methane or 32° ethane circu-
lar halo, for that solar elevation.

Of the detectable halos, the 48° methane circular
halo would be in the field of view of the side-looking
imager �SLI�, which covers heights between �45° and
�6°. However, only the lower part of the halo would
show up in the SLI images. The lower 29° methane
Parroid arc is also in the field of view of the SLI, as
this halo arc stays 8° clear from its associated circular
halo for solar elevation 40°. Because the top of this
arc would be less than 4° above the horizon, the entire
arc may be photographed by the SLI. Furthermore,
the upper 20° methane Parroid arc and its associated
circular halo are in the field of view of the sunward
images of the SA, as the SA imager cover heights
between 15° and 65° �hence scattering angles up to

Fig. 8. Halo display that may occur in the Titan atmosphere. As
in Fig. 7, but now downlooking: The nadir is in the center, and the
circle that surrounds the simulation is the horizon. The symbol
SS marks the position of subsun, which is the reflected image of the
Sun at horizontal crystal faces. Hence the subsun is directly be-
low the Sun and is as far below the horizon as the Sun is above.
With exception of a circular region of 6.5° radius centered at the
nadir, the entire subhorizon sky can be photographed by the Huy-
gens probe.

Fig. 9. Halo display that may occur in the Titan atmosphere. As
in Fig. 7, but now facing to the point at the horizon straight below
the Sun. The horizontal line is the horizon. The symbol S marks
the position of the sun; the symbol SS marks the position of the
subsun. The bright subhorizon halos emerge from light paths
refraction–reflection–refraction, where the reflecting face is a hor-
izontally oriented crystal face. The two subhorizon spots are the
32° ethane subparhelia, which appears as the reflected images of
the 32° ethane parhelia from a horizontal mirror plane. The two
other subhorizon arcs appear as the reflected images of the two 29°
methane halos from poles with z � 0. Contrary to their above-
horizon counterparts, they may arise from crystals as simple as
square pyramids �with cubic face down�.
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25°�. However, because of the narrow horizontal
field of view of the SA, only portions of the halos that
are straight above or below the Sun may be captured.

An interesting aspect of the SA imager is its capa-
bility to detect polarization. This capability en-
hances the possibilities for halo detection. Since
halo light is polarized even for isotropic halo-
generating crystals �polarization in the plane of scat-
tering and degrees of polarization increasing from 1%
to 5% for halo angles increasing from 10° to 25°�, the
presence of a 20° methane Parroid arc or a 20° meth-
ane circular halo may be apparent from a polariza-
tion anomaly. It is worthwhile to mention that if the
SA imager would happen to be directed to a halo
resulting from anisotropic crystals of some unantici-
pated compound, the existence of the halo birefrin-
gence peak in polarization may provide a truly
sensitive means for halo detection.9,13

It is quite possible that the solar elevation at the
Huygens descent will end up in a value that differs
more than 4° from its nominal 40° value or, more
precisely formulated, that the solar elevation as
viewed from Huygens when it crosses the heights
where halo appearance may occur differs more than
4° from 40°. If this happens, then the SA is capable
of detecting a 29° methane circular halo and perhaps
a 32° ethane circular halo.

The conclusion of the foregoing is that among the

potential Titan refraction halos, the 20° methane cir-
cular halo, the upper 20° and the lower 29° methane
Parroid arcs, and the 48° methane circular halo are
definitely detectable by Huygens. The 29° methane
circular halo still has a good chance to be in the field
of view of the SA, but the prospects for the 32° ethane
circular halo detection seem less favorable. The
point halos associated with the remaining poles de-
picted in Fig. 6 are not detectable by Huygens.

In addition to the refraction halos discussed
above, there exists a possibility of formation of Ti-
tan halos from ray paths that include internal re-
flections at the crystal faces. This type of halo is
not restricted to small scattering angles. Among
the terrestrial examples of such halos are the par-
helic circle, and subhorizon halos such as the sub-
sun or the subparhelia, of which the subsun is even
more common than the refraction halos. A Titan
methane or ethane parhelic circle may be detected
in the antisunward images of the SA; subhorizon
halos, including a methane or ethane subsun or
subparhelic circle, a potential ethane 32° subpar-
helion, and two subhorizon methane halos that ap-
pear as a reflection of the two 29° halos with poles
at z � 0, may be detected by the downlooking im-
agers. Figures 7–9 show a full Monte Carlo ray-
tracing simulation of point halos and circular halos
that may occur on Titan; Fig. 10 indicates the rela-
tion of the refraction halos of those simulations with
the halo poles of Fig. 6.

The computer simulations in this article were pro-
vided by Walter Tape.
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