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Systematics of the Novaya Zemlya (NZ) effect are discussed in the context of sunsets.
full mirages, exhibiting oscillatory light paths and their onsets, the subcritical mirages.

We distinguish
Ray-tracing

examples and sequences of solar images are shown. We discuss two historical observations by Fridtjof
Nansen and by Vivian Fuchs, and we report a recent South Pole observation of the NZ effect for the Moon.
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1. Introduction

The image of the low Sun that we see depends criti-
cally on the temperature profile in the lowest few
hundred meters above ground or sea level. For a
standard temperature profile, with a constant tem-
perature gradient, the Sun just flattens but is not
otherwise distorted.

When there is in addition a warm surface layer
over the ground or the water, an observer above this
layer may see an inferior mirage, the desert mirage:
A second image of the Sun appears below the first and
looks like its reflection. As the Sun sinks lower, the
two images merge together to form the familiar
omega shape, and finally the Sun’s last light disap-
pears in a green flash.

Cold surface layers can produce various forms of
distortion. The most dramatic example is the No-
vaya Zemlya (NZ) effect, an arctic mirage over huge
distances, caused by a strong temperature inversion.
Here the image of the Sun may be rectangular and
can be split into several horizontal pieces.

To understand these effects and to reproduce them
by calculation, one has to know how the refraction
varies with the apparent altitude. Given a model of
the atmosphere that allows the refractive index to be
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found for all heights, the refraction can be established
by means of tracing the light’s path backwards from
the eye of the observer to the object from which it was
emitted. In this paper we present such models and
the ray-tracing calculations that go with them.

The emphasis of the present analysis will be on the
NZ mirage. To show how the NZ mirage fits in the
family of sunsets, we shall also discuss the standard
atmosphere and the desert mirage.

Ray-tracing calculations are based on the curva-
ture of the light’s path, defined as the inverse of its
radius of curvature: ¢ = 1/r. However, for the
sake of discussion we find it convenient to express the
curvature in a local Cartesian frame and measure
height from the Earth’s surface upwards and the hor-
izontal coordinate as distance along it. We show in
Section 2 that for near-horizontal rays this terrestrial
ray curvature isjust ¢, = 1/r + 1/Ry, where Ry is the
Earth’s radius.

For a normal atmosphere, the temperature gradi-
ent is approximately —0.006 °C/m, and the light’s
radius of curvature is ~6 times larger than that of the
Earth. Upon backward tracing, a ray that is hori-
zontal at the observer’s position is bent downwards,
but the Earth’s surface curves away faster, and the
ray escapes. 'To the observer, ¢ is then positive, and
he would say that the ray is bent away from the
Earth.

When, however, there exists a strong temperature
inversion, where in some height interval the vertical
temperature gradient exceeds the value 0f 0.11 °C/m,
¢y becomes negative in that interval, and near-
horizontal light rays in this region are bent back
towards the Earth. This may give rise to oscillatory
light paths, which is the characteristic of the NZ mi-
rage. In the following we shall use the phrases NZ
mirage and NZ effect indiscriminately.

We discuss the NZ mirage for the situation of an

20 January 2003 / Vol. 42, No. 3 / APPLIED OPTICS 367



observer below and above the inversion and distin-
guish these two situations as the superior and the
inferior NZ mirages, respectively. In addition, we
study the onsets to these effects, which we denote as
subcritical NZ effects, and finally we investigate their
color dispersion. The subcritical inferior mirage has
been named the “mock mirage” by Young et al.t

Most of the classical observations (Barents,23
Nansen,* Shackleton?®) were doubtlessly made for an
overhead inversion and should be classified as supe-
rior mirages. In this paper we give a short discus-
sion of the observations of Nansen and of the less-
known observation of Sir Vivian Fuchs,® made on 14
August 1957 at Shackleton Base. The latter case
may well have been an example of an inferior NZ
mirage. An extensive analysis of Barents’ observa-
tion, made on Novaya Zemlya in 1597, is presented in
a separate paper in this issue.”

This paper is organized as follows: Section 2 deals
with ray tracing and the description and parametri-
zation of the atmosphere. In Section 3 we make a
rough classification of the different types of sunset
and indicate how the NZ effect fits into this family.
Section 4 gives a more detailed analysis of both the
superior and the inferior NZ mirages. The observa-
tions of Nansen and Fuchs are discussed in Section 5.
In Section 6 we present the first recording of the NZ
effect for the Moon, an observation made at U.S.
Amundsen—Scott South Pole Station on 7-8 May
1998. Section 7 contains a summary. In order not
to interrupt the reading, the derivation of some equa-
tions that are less commonly known or used are de-
ferred to Appendix A.

2. Model of the Atmosphere and Ray Tracing

The techniques used in this paper are the same as
used by Van der Werf.# Here we generalize these
procedures so that they will be applicable to non-
standard atmospheres that also have horizontal tem-
perature and pressure gradients. Below we sketch
these generalizations. Derivations are given in Ap-
pendix A.

The backward ray-tracing procedure is illustrated
in Fig. 1. It requires that one should be able to
evaluate the curvature at any arbitrary point P of the
ray. The curvature of a light ray in the atmosphere
is proportional to the logarithmic gradient of the re-
fractive index, n. When this depends not only on
height, &, but also on x, the distance along the Earth’s
surface, one has at P with polar coordinates (R, ¢)
(see Appendix A),

1 1 os(B) on(h, x)

r n(h, x)

) on(h, x)
on S

(D

where r is the light ray’s radius and g = arctan(ds/
dx) is the tilt of the ray relative to the local horizontal.
The curve is concave relative to the Earth’s center
when r < 0, convex when r > 0.

In a local Cartesian coordinate frame, where 4 and
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Fig. 1. TIllustration of the ray-tracing procedure. The observer is
in A at height h,, above sea level. The ray enters from the right
and passes through point P, with polar coordinates (R, ¢) at height
h above sea level, where its angle with the local horizontal is . At
P a local frame of reference is defined with unit vectors @, (hori-
zontal) and 1, (vertical).

x are distances above and along the Earth’s surface,
the light ray’s curvature is given by

d’h/dx”
[1+ (dh/dx)*]*?

cr(h, B) =

1 1 .
=—+ — cos(B)[1 + sin®*(B)], 2)
r R

where R = Ry + h. In the following we shall call
this the terrestrial ray-curvature. For near-
horizontal rays, close to the Earth’s surface the rays
obey to a good approximation the relation

dih~1+i_ (h, B =0) 3)
dx? r RE_CT ' B=0).

In this study we shall be concerned with rays that
are always very nearly horizontal, and in the follow-
ing we shall often abbreviate the terrestrial ray-
curvature’s notation to just ¢;, understanding that it
still depends on height.

Exact ray-tracing calculations are most easily per-
formed in polar coordinates (R, ¢) around the Earth’s

center. Any curve obeys?
dR
@ = R tan(p), (4)
dg 1 R
dé * r cos(B) ®)

As above, B is the tilt angle of the ray relative to the
local horizontal, or, stated differently, it is the com-
plement of the angle between the position vector and
the curve at the point (R, ).

Equations (4) and (5) form a system of two coupled
first-order differential equations for R and B with ¢
as independent variable. They are amenable in this
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Fig. 2. Left, the modified US1976 atmosphere, shifted in the troposphere to match the sea-level temperature. At low heights an
additional temperature profile may be added, indicated by the insets and shown enlarged in the middle diagrams: A, standard

atmosphere, sea-level temperature T, = 288.15 K (15 °C).

h

atmosphere for near-horizontal rays.

form to numerical integration, e.g., by the fourth-
order Runge—Kutta method, under the condition that
in every point the radius of curvature, r = r(R, B, ¢),
can be evaluated.

This scheme is more general and flexible than the
conventional method of Auer and Standish® and
needs no additional provisions to handle negative ap-
parent altitudes and oscillatory ray trajectories.
Moreover, it may be used without modifications when
the atmosphere exhibits horizontal temperature and
pressure gradients, such as we shall need in this
paper.

The index of refraction, n, follows from (see Appen-
dix A)

A(N)P(O,
n(h, .’)C) =1+ (T')(h(x)x)
rg(h)  dw
xexp )| =B f 2(0) T(h', x)]' ©

Here, T'(h, x) is the temperature profile; P(0, x), the
atmospheric pressure at sea level; and g(h), the grav-
itational acceleration at height A. A(\) depends
slightly on wavelength. Using the wavelength de-
pendence of dry air as given in the Handbook of

B, a warm layer as could produce a desert mirage for an observer above it.
T, =300.15K (27 °C), hpjso = 4 m,a = 0.5 m, and AT = -2 °C. C, a cold layer as could produce the NZ effect.

T, = 250.15 K (—23 °C),

ciso = 45 m, a = 4 m, and AT = 5°C. The diagrams on the right show the corresponding terrestrial ray-curvatures in the lower

Chemistry and Physics,'© one finds the following val-
ues for green, yellow, and red light: A(520 nm) =
7.8998 10 ° K/hPa (green), A(580 nm) = 7.8686 10 °
K/hPa (yellow), and A(650 nm) = 7.8434 10 ° K/hPa
(red). Further, B = 3.4177 10 2°C/m.

To find n(h, x), it is necessary to have a functional
description of T'(h, x) that will be suitable for ray
tracing and flexible enough to describe the character-
istics of the atmospheres that cause the NZ effect and
the desert mirage. We use a temperature profile
that is based on the U.S. standard atmosphere of
1976 (US1976). To allow for a free choice of the
temperature at sea level, T, the height of the tropo-
sphere, H, is made variable. Also, the atmospheric
pressure at sea level, P, is made adjustable. The
thus modified US1976 atmosphere has been denoted
as MUSA76.8 We may append to this MUSA76 at-
mosphere a warm or cold layer, for which we use an
analytical form, borrowed from the theory of the elec-
tron gas, where it is known as the Fermi distribution.
The same function is used in nuclear physics, where
it is encountered as the Woods—Saxon potential:

T(h, x) = Tyusars(h) — AT(x)

N AT(x)
1+ exp{—[h — huy(x)]/a(x)}

(7
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Fig. 3. Light paths for the standard atmosphere (inset A of Fig. 2)
traced backwards from an observer’s height at 15 m, up to an
apparent altitude of 50’. The corresponding images of the Sun
are shown along the top, for equidistant steps in altitude. The
scale of the horizontal distance along the Earth (x axis) has been
compressed by a factor 500 relative to the y axis.

Here, h(x) is the height of the isotherm about
which the added temperature profile is centered.
AT(x) is the temperature jump across the inversion,
and the diffuseness parameter a(x) determines the
width of the jump.

Figure 2 shows the MUSA76 atmosphere. The in-
sets, shown enlarged in the second column, indicate
the cases of A, no addition; B, an additional warm
layer; and C, an additional cold layer. The corre-
sponding terrestrial ray-curvatures are shown in the
third column.

3. Rough Classification of Sunsets

The image of the Sun can be found when for each true
(geometric) altitude, ¢(), the apparent altitude, B, is
known. The functional relationship between them
can be named the transformation curve.

A rough classification of sunsets is made in this
section, taking as examples the three temperature
profiles shown in Fig. 2. For each of them we give an
example of ray tracing, the transformation curve, and
a sequence of images for the setting Sun. All ray
tracings are done up to a height of 85 km.

If there were no atmosphere at all, the path of a
light ray would be straight and a light-emitting body
would be in the direction in which it is seen. The
transformation curve would be simply given by =
&(0). The image of the Sun would be perfectly
round, progressively chopped off from below by the
horizon as it sinks.

A. Standard US1976 Atmosphere

Ray tracing for the standard US1976 atmosphere is
shown in Fig. 3. The observer’s height is 15 m.
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Fig. 4. Transformation curves for the standard atmosphere, the
desert mirage atmosphere and the NZ mirage atmosphere shown
in Fig. 2, for an observer at ~ = 15 m. If there were no atmo-
sphere, the true and the apparent altitudes would be equal (upper
curve).

Light paths for different apparent altitudes are
shown in the first 100 m. The pattern is quite
regular: Rays do not cross, and the higher the
apparent altitude, the higher also the true altitude.

The transformation curve for the standard atmo-
sphere is shown in Fig. 4, along with those for the
desert mirage and the NZ effect, discussed in the
following subsections. It is depressed relative to the
hypothetical case of no atmosphere. The difference
between them is the atmospherical refraction, and
this increases with decreasing apparent altitude.
The latter may become negative because the observer
is at a certain height above sea level. The lowest
apparent altitude, B,,;,, is the one for which the ray
just grazes sea level at its lowest height. This de-
fines the apparent horizon, and —8,,;, is called the
horizon dip.

The sequence of the Sun’s images on top of Fig. 3
shows a flattening that gives a nearly perfect ellipti-
cal shape. The ratio of the vertical and the horizon-
tal axes equals dB/dd (), which is the Jacobian of the
transformation from the true to the apparent alti-
tude. This may in turn be related to the refraction,



which is defined by £ = B — ¢(©). It is then conve-

nient to introduce the flattening as

hor.axis — vert.axis _ d[ () — B]

dd (=)

flattening = hor axis
or.axi

dé()

Since the refraction increases faster than linear with
decreasing true altitude, the flattening increases as
the Sun sinks. Its approximate value at apparent
altitude B = 0 can easily be calculated analytically
(see Appendix A) and gives, expressed in terms of the
terrestrial ray-curvature,

8)

flattening(f = 0) = 1 — Rzc(B = 0)

AMNPRg [ (dT
i (AL A

The above equation applies for any atmosphere
for which the temperature gradient, (d7'/dh),, is
constant from sea level up to the height of the ob-
server, under the condition that 0 = Rgzc, (B = 0) =
1. Inserting the parameters for the US1976 stan-
dard atmosphere, except the temperature gradient,
gives

flattening(p = 0) ~ 0.21[1 + 29.2(”) } . (10)
dn/,

For the standard value (d7'/dh), = —0.0065 °C/m,
the flattening has a value of 0.17.

B. Desert Mirage

We now consider a warm layer causing a desert mi-
rage. The observer will again be at a height of 15 m
above sea level. The parameters are as in Fig. 2,
case B: The warm layer has a temperature jump
AT = —2°C. The diffuseness is ¢ = 0.5 m, and
hence more than 90% of this jump is confined in an
interval Ah =~ 6a = 3 m around the central isotherm
at h,,, = 4 m [see Eq. (7)]. In the vicinity of this
central isotherm the (negative) temperature gradient
is so strong that the ratio P/T, and hence the density,
increases with height: One has a density inversion.
The condition for this to occur is

dT< B=-3.4107%°C/ (11)
= . m.
The curvature, 1/r, then becomes positive, and for
the terrestrial ray-curvature, one has ¢ > 1/Ry, as is
shown in Fig. 2, case B.

Rays drawn from the observer’s eye at positive ap-
parent altitude travel through an altogether normal
atmosphere. But rays seen at negative apparent al-
titude that come near the density inversion receive
an upward sweep in this region, resulting in a
smaller refraction. The effect is clear from Fig. 5,
which shows that it is possible for rays at negative

Desert-mirage atmosphere

0 10 20 30 40 50
Distance (km)

Fig. 5. Light paths for the desert mirage atmosphere (inset B of

Fig. 2), observer’s height at 15 m, and corresponding images of the

Sun in equidistant steps up to 50’ apparent altitude. The desert

mirage arises if there is a sufficiently warm layer below the ob-

server (inferior mirage).

apparent altitude to cross other rays at less negative
apparent altitude.

The effect of adding a warm surface layer to the
(standard) atmosphere on the transformation curve
is shown in Fig. 4. The refraction does not increase
all the way with decreasing apparent altitude, but
suddenly bends upwards again. In this region one
has d¢(0)/dB < 0, meaning that the image is mir-
rored.

The lowest point of the transformation curve
marks the vanishing line where the upright image
and the mirrored image merge and finally disap-
pear in a point as the Sun sets. This is illustrated
by the sequence of images in Fig. 5. The color
dispersion is such that the transformation curve for
green light lies lower than that for red light. This
color dispersion is largest on the vanishing line, and
a pronounced green flash may be seen when the air
is clean enough.

C. Novaya Zemlya Effect

Next we consider the cold layer as shown in Fig. 2,
case C. The observer is again at 15 m above sea
level. Overhead for him is a temperature inversion
that is centered around 4., = 45 m. The temper-
ature jump is AT = 5 °C, and the diffuseness param-
eterisa =4 m. Thus, whereas for the desert mirage
the observer is above the region of the largest tem-
perature gradient, he now is below it.

From Fig. 2, case C, one notes that the terrestrial
ray-curvature, cp, is negative on a height interval
around A For this to occur, the condition is

ciso*

dT T(h)*

ah T AMPRR, (12)

20 January 2003 / Vol. 42, No. 3 / APPLIED OPTICS 371



which implies a temperature gradient that is typi-
cally larger that 0.11 °C/m.

Denote as h, the lowest level in Fig. 2, case C, for
which we have ¢, = 0, so that at h = hy;: 1/r =
—1/Rg. Then, by relation (3), and expanding c,(h)
around A, up to first order, we have

d*(h — h,) _ (dcT

—) (b= hy).
dx? dh)hhl '

At h = hq, (dep/dh) is negative so that relation (12)
allows for harmonic oscillations around the height ;.
This solution provides the schematic explanation of
the NZ effect.

Figure 6 illustrates the ray-tracing results. Rays
of sufficiently high apparent altitude, indicated by A,
break through the inversion layer, and the higher 3,
the less the effect of the inversion. Also rays that,
upon backward tracing, start out from the observer
on a sufficiently negative altitude will on their up-
ward course pass through the inversion with little
disturbance (rays indicated by B). In between there
is an interval of B values, symmetric around the true
horizon, where the rays enter the inversion zone at
small enough angles to be trapped (rays C). They
then follow oscillatory paths until the inversion
weakens sufficiently that it can no longer sustain the
oscillations. The methods for achieving this weak-
ening of the inversion in the context of the ray-tracing
formalism are discussed in Section 4.

In the interval of B values, for which the NZ effect
occurs, the refraction increases dramatically, and the
corresponding true altitudes, ¢(«), are much de-
pressed. The transformation curve of the present
example is included in Fig. 4.

The images of the sunsets are shown also in Fig. 6.
Along the top of the figure one first sees the images of
the Sun at positive apparent altitudes (rays A).
When B decreases, the part where the rays become
oscillatory (rays C) is missing, and the image strongly
flattens at the bottom. Next, when the Sun is low
enough to match the rays of strongly negative 8 val-
ues (rays B), the corresponding (mirrored) image ap-
pears. In between is the gap from which the rays C
are missing, which is sometimes called Wegener’s
blind band.

But when the Sun has sunk far enough, the situ-
ation reverses: The rays from categories A and B
are now missing, but those from C, which correspond
to a much lower true altitude, ¢(«), will contribute
when the Sun matches these altitudes. This is the
depressed part of the transformation curve. The im-
ages are highly distorted and pass through a rectan-
gular phase and phases where the image is split into
several disjunct components. These are shown in
Fig. 6 on the right-hand side.

(13)

4. Systematics of the Novaya Zemlya Effect

In this section we investigate the NZ effect in more
detail. In particular, we study the role of the height
of the observer and the strength of the inversion, as
embodied in the temperature jump. Also, we study
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Fig. 6. Light paths for the NZ mirage atmosphere (inset C of Fig.
2), observer’s height at 15 m, and corresponding images of the Sun.
The strong temperature inversion is here above the observer (su-
perior mirage). For apparent altitudes, B, larger than a given
value, the backwards traced rays (indicated by A) break through
the inversion. Also, rays of sufficient negative 3, which (just) miss
the ground, break through the inversion on their upward course
(indicated by B). In a limited range of apparent altitudes, around
B = 0, rays follow oscillatory paths (indicated by C). Eventually
they escape in a region where the inversion is less strong. The
Sun’s images on top arise from rays A and B; rays C are missing,
which causes the gap. Rays C may produce images when the Sun
is well below the horizon (images to the right).

its color dispersion. To do so, we adopt a tempera-
ture inversion appended, as before, from the
MUSA76 atmosphere. Its central isotherm will be
at a height A, = 40 m, with a diffuseness parameter
of a = 3 m. The sea-level temperature is taken as
T, =260 Kin all cases. We shall place the observer
below the inversion, at 4 = 15 m and above it, at A =
45 m and distinguish these cases as superior and
inferior mirages, respectively. When the tempera-
ture jump is strong enough to force at least part of the
rays into oscillatory paths, we shall speak of full mi-
rages. If the temperature jump is (just) not strong
enough to achieve this, we will denote them as sub-
critical mirages.

In its top panels Fig. 7 shows the temperature
profile and the terrestrial curvature for such an in-
version for a temperature jump of AT = 5°C. The
other panels show the tracing examples for the sub-
critical and full mirages, both inferior and superior.

As mentioned above, it is necessary for a full mi-
rage to let the inversion weaken away from the ob-
server such that the backwards traced rays are
allowed to escape upwards through the inversion.
There are two obvious ways to achieve this: (1) by
making AT dependent on distance and making it de-
crease in a convenient way and (2) by making the
diffuseness parameter, a, depend on distance and
letting it increase with distance, decreasing in this
way the temperature gradient across the inversion.
Mathematically, the two methods are rather similar,
and we have chosen the second method. For the
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Fig. 7. A, Temperature profile of an inversion, AT = 5.0 °C, cen-
tered around A, = 40 m with a width parameter ¢ = 3 m. B,
Terrestrial ray-curvature, showing the heights i, and A, between
which ¢, is negative. For an observer at ~ = 45 m: C, full
inferior NZ mirage, AT = 5.0 °C. D, Subcritical inferior NZ mi-
rage, AT = 1.5 °C. For an observer at A = 15 m: E, full superior
NZ mirage, AT = 4.0 °C. F, Subcritical superior NZ mirage, AT =
3.7°C.

dependence of the diffuseness on distance we adopt
the following form:

a(x) = a(O)a X = X, (14)

a(x) =a(0)[1+ alx —x9)%, x>x, (15)

where x, and a are parameters that may be adjusted
for each case separately. In all the calculations,
shown in this section, x, has been set at 50 km. For
all subcritical mirages the rays escape already before
50 km, and the value of the parameter « is irrelevant
in these cases. However, since a determines how fast
the inversion weakens with distance beyond x,, the ray
tracing for the full mirages depends sensitively on its
value. The calculations of the full inferior mirage
(AT = 5.0 °C) and the full superior mirage (for AT =
4.0 °C) have been made with a value o = 0.0001. For

the case of the superior mirage with the much stronger
inversion (AT = 7.0 °C), o = 0.0004 was used.

For an inferior mirage to show oscillatory paths the
observer must be within the region where the terres-
trial ray-curvature is negative. With reference to
Fig. 7B, he must be above k., to classify the mirage
as inferior, but below A, where c, = 0. Ifheis above
hs, a ray traced backwards starting out at a negative
apparent altitude will on its following upward course
reach the observer’s height again but this time with
the opposite apparent altitude and thus escape. If
he is, however, below A, rays within some range of 8
values will have oscillatory paths. This range in-
creases as the observer lowers his position.

Also for a superior mirage the height of the ob-
server affects the image. When he has a low posi-
tion, the ground or sea level limits the range of B
values that can be ducted by the inversion to the
negative side. But by the same mechanism, also
rays at positive apparent altitude are chopped off
when, after one oscillation, they return at the observ-
er’s height, this time on a downward course. Hence
the range of B values that contribute to the image
increases with height above the ground.

The transformation curves are shown in Fig. 8 for
red (650 nm), yellow (580 nm), and green (520 nm)
light. One notes the similarity between the inferior
and the superior mirages: For a small temperature
jump, such that the mirages are subcritical (Figs. 7D
and 7F), rays that are horizontal in the region where
the temperature gradient is largest tend to stick to this
region. In their transformation curves this effect
shows up as a narrow depression, deepening and
broadening as AT is made to increase. The transfor-
mation curves for the subcritical NZ mirages, both
superior and inferior, show some similarity to that of
the desert mirage (see Fig. 4). Also here, the region of
positive apparent altitude, to the right of the depres-
sion, gives an upright image. Directly to the left of
the dip, the transformation curves slope down and pro-
duce an inverted image. In the dip itself the color
dispersion is large, especially for the subcritical supe-
rior mirage. Both the inferior and the superior mi-
rages, when just subcritical, can produce a pronounced
green flash. Typical sunset sequences are shown in
Fig. 9.

The subcritical superior and the subcritical inferior
NZ mirages also share with the desert mirage the
feature that the transformation curves may exhibit a
maximum at negative apparent angles. For this to
occur the observer should be at a high enough posi-
tion, else this maximum will be chopped off by the
horizon. When the sinking Sun just touches this
maximum, it will show the red light first, and the
satellite image appears as a red flash.

When AT becomes large enough to force some of the
rays into oscillatory paths, the dips in the transfor-
mation curves are drastically depressed and widened.
The regular sunset now has a blind band, as the
top row of images in Fig. 6 shows. When the Sun
sinks further, it will reappear when its true alti-
tude matches the depressed central part of the
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TRANSFORMATION CURVES OF NZ MIRAGES
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Fig. 8. Transformation curves between apparent altitude and true altitude, for red (650 nm), yellow (580 nm), and green light (520 nm).

The vertical axes show the true altitude, ¢(), and the horizontal axes the apparent altitude, 8, both in minutes of arc.
mirages for an observer at . = 45 m. From top to bottom: AT = 0.5, 1.0, 1.5 (subcritical), and 5.0 °C (full mirage).

Left, Inferior NZ
Right, Superior NZ

mirages for an observer at » = 15 m. From top to bottom: AT = 3.7 (subcritical), 4.0, and 7.0 °C. Note the enormous color dispersion

of the (just) subcritical superior mirage.

transformation curve, and this time it is seen inside
what earlier was the blind band. Also for these full
mirages sunset sequences are shown in Fig. 9.

5. The Observations of Nansen and Fuchs

On 16 February 1894 Fridtjof Nansen saw the NZ
effect, at 80° 01’ N and approximately 135° E. A
drawing, made by him, is shown in Fig. 10. Nansen
described it as follows:

At first the image was a flattened glowing stripe of
fire at the horizon. Then two stripes grew out of
it, one above the other with a dark space in be-
tween. After climbing up the main mast I saw
four or even five of such horizontal lines, all equally
long such as one would imagine a dull-toned red
and square sun, with dark horizontal stripes.
(Ref. 4)

The true altitude of the Sun at local noon was —2°
22'. Nansen’s description comes close to the images
of the superior NZ effect, analyzed before for AT =
7 °C, of which the images are shown in Fig. 9, column
3. The fact that the image grew in width when he
climbed up the mast shows that its width was limited
by the height of the observer above the ground and, as
explained in Section 4, indicates that it must have
been a superior mirage.

On 14 August 1957 the NZ effect was observed
from Shackleton Base, 77° 57’ S, 37° 17" W. At local
noon the Sun’s true altitude was —2° 17’. Fuchs®
described the event as follows:
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Then a fraction of the sun’s disc appeared again,
flickered and disappeared. For some time it came
and went, the greatest elevation revealing about
one tenth of its orb. Sometimes as it reappeared a
red flash seemed to shoot out and pulsate along the
horizon. (Ref. 6)

Here we possibly have an example of an inferior NZ
mirage, at the edge between subcritical and oscillatory.
This would explain the small height of the image. See
for comparison the images of Fig. 9, fourth column.
Further, the observer’s position was rather high: 60
m above sea level. And finally, the red flash, “pulsat-
ing along the horizon,” indicates that the light rays
within a small apparent altitude range did skim the ice
at the lowest point of their path when going from a
subcritical into a full mirage. See also the ray tracing
for our analysis of an inferior NZ mirage in Fig. 7C. If
the inversion had been overhead, then, for a just crit-
ical inversion, the rays would never have come much
lower than the height of the observer himself, and
could not have been reflected off the ice.

6. Observation of the Novaya Zemlaya
Effect for the Moon

On request of one of the authors (G. P. Kénnen),
observations on the visibility of the Moon have been
made at South Pole Station during the southern
winter of 1998. On 7 May 1998 the NZ effect for
the Moon was seen, starting at 06:00 UT, when its
true altitude was —2° 59’.6. As its declination
changed from North to South, the image passed



Subcritical Mirages

Superior Inferior

Fig. 9.
2). Full NZ mirages:
realistic; for the full mirages only the red will survive.

through a distorted phase and transformed into its
normal appearance at approximately 07:30 UT on 8
May, when its true altitude was 1° 03'.5.

Warmer air was coming in, and the ground tem-
peratures on 8 May were —68 °C (0 UT), —66 °C (6
UT), —60 °C (12 UT) at a pressure of 690 hPa. The

Images of the Sun for (from left to right) subcritical NZ mirages:
superior, AT = 7.0 °C (column 3); inferior, AT =5.0 °C (column 4).

Full Mirages

Superior Inferior

superior, AT = 3.7 °C (column 1); inferior, AT = 1.5 °C (column
For the subcritical mirages the colors may be

Note the large green flash in column 1.

temperature inversion was overhead for the observ-
ers, and the mirage was of the superior type.
Details of the observation are listed in Table 1.
The remarks in the right-hand column are by Rodney
Marks. The observer is at 3000 m above sea level.
At —68 °C and 690 hPa the astronomical refraction
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would be 38'.9 for a standard temperature gradient of
—0.0065 °C/m and 43’'.0 when taken 0 °C/m. This
constitutes the first recording of the NZ effect for the
Moon.

7. Summary and Conclusions

The Novaya Zemlya (NZ) effect is a mirage that finds
its origin in a strong temperature inversion. In its
full form, light-ray paths are oscillatory, and a celestial
body may become visible even when it is geometrically
several degrees below the horizon. We distinguish
the paths by the location of the observer relative to
the height where the vertical temperature gradient is
strongest: For an observer below the inversion, it is
a superior mirage, and when the observer is above it,
the mirage is of the inferior type. In addition, we
have studied the onsets to these effects where the
inversion is just not strong enough to force the light

Fig. 10. Drawing by Fridtjof Nansen of the NZ effect as he observed it on 16 February 1894 at 80° 01' N and approximately 135° E.

rays into oscillation. These mirages have been
called subcritical.

It is convenient to discuss sunsets and mirages in
terms of the relationship between the true and the
apparent altitude, the transformation curve. Knowl-
edge of this transformation curve enables a direct
calculation of the shape of the Sun’s image. A com-
parison is made with the sunset under standard atmo-
spheric conditions and with the desert mirage. In all
cases the color dispersion has been studied and cases
in which the green flash may be expected, identified.

Ray-tracing calculations are at the basis of these
transformation curves. We present a general and
flexible formalism to perform these calculations and
discuss the generalizations that are needed to deal
with a nonstandard atmosphere, which also may
exhibit horizontal temperature and pressure gradi-
ents.

Table 1. Observation of the Novaya Zemlya Effect for the Moon at South Pole Station on 7-8 May 1998

Time True
(UT, dd/mm) Declination Parallax Altitude® Remarks®
06:00 07/05 2°05'.5 N 54’1 —-2°59'.6 Visible
12:00 07/05 1°08'.5 N 54'.1 -2°02'.6 Visible
18:00 07/05 0°11".3 N 54’1 —-1°05'4 Visible
00:00 08/05 0°45'.9 S 54'.0 —-1°08'.1 Visible
01:30 08/05 1°00'.2 S 54'.0 0°06'.2 Flattened, distorted, rippling
Observed elevation, ~2°
06:00 08/05 1°43'.0 S 54'.0 0°49'.0 Hardly visible
Observed elevation, ~1°-1°.5
07:30 08/05 1°57'.3 S 54'.0 1°03'.5 Regular shape, gibbous phase

Observed elevation, ~1°.5-2°

“At South Pole Station: True altitude is —(declination + parallax).

®Description by Rodney Marks.
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We discuss in some detail the historical observa-
tions of the NZ effect of Nansent from 1894 and of
Fuchs® from 1957. The latter has most likely been
the only reported observation of an inferior NZ mi-
rage. Finally, we present some details on the first
reported observation of the NZ effect for the Moon,
made on 7 May 1998 at South Pole Station.

Appendix A: Mathematical Details and Derivations

1. Curvature in a Nonspherically Symmetric Atmosphere

In the presence of horizontal temperature and/or
pressure gradients, also the gradient of the index of
refraction will have a horizontal component. One
may start from the equation of Born and Wolf:11

1
—=—9-Vn, (A1)
r

S | =

where ¥ is a unit vector that is chosen perpendicular
on the ray’s path. In terms of the local unit vectors
1, and 0, defined at a point P of the path (see Fig. 1),
one has

¥ = cos(B)h, — sin(B)t,, (A2)
Vn = n + o (A3)
T on T
and this gives Eq. (1) of Section 2:
1 1 on on
—=— — —si —. A4
. [cos(B) o sin(B) ax} (A4)

2. Terrestrial Curvature

At a point P on the ray’s path with polar coordinates
(R, ¢), one finds from Eq. (4)

na
B = arctan | — R

R @ (Ab)

which upon differentiation gives

B 1 [1ER 1R\
d¢_1+ 1dR\*|Rd$> R*\do/ |’
R dé

On the other hand, we know from Eq. (5) that

e [ B L[ RBI(LARE
dé rcos(B)| r R d¢ '
(A7)

Equating these gives
1dR 1 (dR\® R 1 dR\*]"*
5 3.2 p2 | 3. ={1+— |1+ |=—
R d¢® R*\do r R do

Cla]

(A8)

Introducing the differentials dR = d~ and Rd =
dx in a local frame at P, as shown in Fig. 1, with dha
vertical and dx horizontal, one finds

&eh (1 1 dn\*]"?
— ==+ |1+ |
dx R r dx
dr\* 1 [dnr)?
=] |+= |+
1 (dx) } R (dx) ’ (49)
which, when we use di/dx = tan(B) and [1 + (di/

dx)?]*2 = 1/cos(B), gives the terrestrial ray-curva-
ture:

X

@
dux?

cr(B) = EETAGEE
()]
dx

1 + 1 {cos(B)[1 + sin*(B)]}.  (A10)
r R

In all practical cases one may then take R ~ Ry.
When further specializing to near-horizontal rays, for
which sin(B) << 1, this reduces to

dx? r RE_CT B =0,

which is relation (3) of Section 2.

(A11)

3. Refractive Index and Temperature Profile

Considering air as an ideal gas, its refractive index is
related to the atmospheric temperature, T'(h, x), and
pressure, P(h, x), by

hox)=1+ AN)P(h, x)
min, x) = T(h, x) ’
where A(N) is the reduced refractivity.®
The pressure is related to the pressure at zero el-
evation, P(0, x), by

(A12)

, (A13)

h g(h')dh’
P(h, x) = P(0, x)exp [— ’Zf gT((h,)x)

where £ is Boltzmann’s constant and m the molecular
mass of dry air. The acceleration of gravity varies as

2
h) =g(0 E . Al4
g(h) = g( )(RE+h) (A14)
Thus the refractive index is found from
AN)P(h, x)
=1+ 2=
n(h,x)=1 T(h, »)
hg(h') dh’
X exp | —B , (Al15)
P J g(0) T(h")

with B = mg(0)/k = 3.4177 10~ 2 K/m and for yellow
light of 580 nm, A = 7.8686 10~ ° K/hPa.
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When we neglect the horizontal components of the
gradients of T, P, and n, and replace n in the denom-
inator with 1, the radius of curvature for a near-
horizontal ray, close to the Earth’s surface, is given by

1 1 dn AMNPO)[ 1 dT(h)+ B
T(0) T(h) dh Th)|"

r n(h)dh

(Al6)

4. Flattening of the Setting Sun

Let an observer be at a height h, above sea level.
Consider two rays, traced backwards at initial appar-
ent altitudes dB/2 and —dB/2, hence symmetric
around the observer’s horizontal. Denote the terres-
trial ray-curvature of near-horizontal rays as ¢, =
cT(h = Oa B = 0)-

The light ray at —dB/2 will travel an additional
distance dx = dB/c before it emerges again at height
hy, but now at an angle +dB/2. This follows directly
from relation (A11). From there on its path will be
identical to that of the ray traced from the observer’s
position at the positive angle d3/2. Hence in true
altitude these rays are separated by an angle dd(«) =
dx/Rpg.

Taking the terrestrial ray-curvature, ¢, = 1/r +
1/Ry positive and constant over the additional path
length dx, which is justified because the ray stays
close to the Earth’s surface, one finds

_dx _ dB
) = o =1 R

Now dB/dd¢(0) may be identified with the ratio of
the apparent vertical and horizontal diameters of the
Sun. Itisthen clear that the Sun appears vertically
compressed by a factor (1 + Rg/r). The flattening
may defined as [see Eq. (8)]

(A17)

dp
flattening = 1 — = —R;/r.
ng dd () 5/

(A18)
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For a constant vertical temperature gradient (d7'/
dh), this gives, with Eq. (A16),

R
ﬂattening =~ _TEO)
r =
AN)PyRy | (dT
S e et
i |(a), o]

which is relation (9).
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