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ABSTRACT

Statistical analysis of the wind speeds, generated by a climate model of intermediate complexity, indicates
the existence of areas where the extreme value distribution of extratropical winds is double populated, the second
population becoming dominant for return periods of order 103 yr. Meteorological analysis of the second population
shows that it is caused when extratropical cyclones merge in an extremely strong westerly jet stream such that
conditions are generated that are favorable for occurrence of strong diabatic feedbacks. Doubling of the green-
house gas concentrations changes the areas of second population and increases its frequency. If these model
results apply to the real world, then in the exit areas of the jet stream the extreme wind speed with centennial-
to-millennial return periods is considerably larger than extreme value analysis of observational records implies.

1. Introduction

Motivated by safety and dike design demands, much
statistical research with observational data has been
done on the estimation of extreme wind speeds and
storm surges (Cook 1982; Simiu et al. 2001; de Haan
1990) for return periods up to 104 yr. Although a wide
variety of methods has been developed (see, e.g., Pal-
utikof et al. 1999 for an overview), all practical appli-
cations are hampered from the restricted length of the
observational series (order 100 yr), on which the sta-
tistical extrapolations are based.

Several assumptions underly the statistical estimate
of the wind speed with a return period of 104 yr. The
most important one that all extratropical extremes (up
to return periods of 104 yr) belong to the same popu-
lation, is hard to verify from the available short obser-
vational sets.

We evaluated this problem within the context of a
climate model of intermediate complexity. We have gen-
erated ensemble runs (consisting of 3509 yr in total)
with a climate model, both for the current climate
(;1975) and for a climate at doubled CO2 concentra-
tions (;2065). With these long records we searched for
double populations in the extreme value distributions of
annual wind extremes for return periods up to 104 yr.
In addition, we explored the effect of increased green-
house gas concentrations on the mean annual wind and
on the double populations. Finally, we analyzed the me-
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teorological conditions of the small but violent second
population of extreme winds.

The paper is structured as follows: Section 2 describes
the theoretical statistical basis, and section 3 the data
handling of the model output and the detection of double
populations from extreme value distributions. Section 4
describes the climate model used, and section 5 the sta-
tistical results. Section 6 analyzes the second population
in a meteorological sense, and section 7 gives the dis-
cussion and conclusions.

2. Extreme value analysis

a. General arguments

Let Mm be the maximum of m independent obser-
vations j1, j2, . . . , jm from distribution F(x):

M 5 max(j , j , . . . ,j ),m 1 2 m (1)

then the distribution of Mm is given by

P(M # x) 5 P(j # x)P(j # x) · · · P(j # x)m 1 2 m

m5 F (x). (2)

Extreme value theory states that the distribution of max-
ima of many probability distributions F(x) (properly
normalized with am and mm) approaches asymptotically
a specific class of functions G(x):

M 2 mm m mlim P # x 5 lim F (a x 1 m )m m1 2am→` m→`m

5 G(x), (3)

where G(x) is given by
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1/u2(12ux)G(x) 5 e , (4)

with the parameter u ∈ R determining the nature of the
function [see e.g., de Haan (1990) and Kotz and Na-
darajah (2000)]. A special case of G(x) is the Gumbel
distribution, which is G(x) with u 5 0. Then, inter-
preting u 5 0 as the limit u → 0, (4) reduces to

2x2eG(x) 5 e . (5)

There are many examples of parent distributions F(x)
whose normalized extremes converge to the Gumbel
distribution, for example, the normal distribution, the
Poisson distribution, the exponential distribution and the
Weibull distribution (Embrechts et al. 1997).

b. Generalized extreme value distribution of wind
data

We rewrite m in (1) as rp, with r the effective number
of independent daily averaged wind speeds in a year,
and p the sample period in years from which the maxima
Mp are extracted. If we suppose that the distribution of
the normalized p-yr wind maxima follows G(x) for p
$ 1, we can write (4) in the form of the so-called gen-
eralized extreme value (GEV) distribution Gp(u) (Jen-
kinson 1955):

2xp2eG (u) [ P(M # u) 5 e ,p p (6)

with Mp the p-yr wind maxima, Gp(u) the GEV distri-
bution resulting from p-yr sampling, and xp a substitute
for

21/uu 2 mpx 5 ln 1 2 u , (7)p 1 2ap

in which mp is the location parameter, ap the scale pa-
rameter, u the shape parameter, and u the wind speed.
The location parameter mp can be interpreted as the wind
speed that is exceeded on average once per time interval
p in the original record. Hence in the total record an
exceedance of the level with value mp recurs with an
average period p (Buishand and Velds 1980; see also
Langbein 1949). For u . 0, u is bounded by an upper
limit of value mp 1 ap/u; for u # 0, u can approach
infinity.

The Gumbel distribution (u 5 0) is interpreted as the
limit of (7) as u → 0, leading to

u 2 mpx 5 . (8)p ap

Extreme value distributions are often plotted as a so-
called Gumbel plot, where the variable u is on the or-
dinate, and the abscissa is transformed into the Gumbel
variate:

mGumbel variate 5 2ln{2ln[F (u)]}. (9)

On a Gumbel plot, a Gumbel distribution is represented
by a straight line, whereas a GEV distribution (u ± 0)

is curved, downwardly for u . 0 and upwardly for u
, 0.

Using that [G1(u)]p 5 Gp(u) (Leadbetter et al. 1983,
p. 8), from (6) follows:

x 5 x 2 lnp.p 1 (10)

Substituting (10) into (7) gives
2u1 2 p

2um 5 m 1 a , a 5 a p . (11)p 1 1 p 1u

In the special case of the Gumbel distribution, the right-
hand sides of (11) are m1 1 a1 lnp and a1, respectively.

In extreme value studies, the probability of exceed-
ance of a certain value u is usually expressed in terms
of the return period T. The return period T is the average
number of years between two succeeding exceedances
of the corresponding return value u:

1
xpT(u) [ ø pe for T k p. (12)

1 2 G (u)1

c. Two-component extreme value distribution

The local wind can be caused by two meteorological
systems a and b of different physical nature, each of
them generating its own distribution Fa(u) and Fb(u).
Then, the parent distribution Fa,b(u) is said to be mixed,
and can be decomposed into

F (u) 5 (1 2 e)F (u) 1 eF (u),a,b a b (13)

with 0 , e , 1. An interpretation of (13) is that of
every m samples, (1 2 e)m originates from mechanism
a, and em from b. Especially interesting is the case in
which e K 1, and where the far tail of Fb(u) is heavier
than that of Fa(u). Then Fa,b(u) ø Fa(u), and Fb(u) can
not easily be detected from the parent distribution. How-
ever, the extremely large events will originate from sys-
tem b, which existence may be detected from the ob-
served distribution of the extremes.

If (u) → Ga(u) and (u) → Gb(u), then the(12e)m emF Fa b

distribution of the extremes Ga,b(u) of the mixed dis-
tribution is given by (Cook et al. 2003):

(12e)m emG (u) [ F (u)F (u) → G (u)G (u),a,b a b a b (14)

where the subscripts a, b of G(u) refer to the populations
of systems a and b.

The simplest case of Ga,b(u) represents the multipli-
cation of two Gumbel distributions Ga(u) and Gb(u),
which Rossi et al. (1984) calls the two-component ex-
treme value (TCEV) distribution:

2(u2m )/a 2(u2m )/aa a b bG (u) 5 exp[2e 2 e ].a,b (15)

If transformed into the Gumbel variate, (9) becomes for
the TCEV distribution

2(u2m )/a 2(u2m )/aa a b bGumbel variate 5 2ln[e 1 e ], (16)

which shows that a Gumbel plot of extremes from a
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FIG. 1. A GEV distribution Ga(u) and a Gumbel distribution Gb(u),
with the corresponding GTCEV distribution Ga,b(u). The intersection
point C of Ga(u) and Gb(u) is here at x1 5 3.67, corresponding with
a return period TC of 40 yr. The distributions are shown on a Gumbel
plot.

mixed distribution Ga,b(u) results in a smooth transition
from the asymptote of the distribution of the extremes
Ga(u) originating from the dominant population a, to
the distribution of the violent extremes Gb(u), origi-
nating from the rare population b. The intersection point
C of Ga(u) and Gb(u) marks the sampling period TC

where the probability for sampling an extreme from
population a or b is the same.

Figure 1 illustrates this behavior for the second-sim-
plest case of a TCEV distribution, which is the case that
Ga(u) in (14) is allowed to generalize to a GEV distri-
bution, but Gb(u) remains a Gumbel distribution. We de-
note this type of two-component distribution, which we
shall concentrate on in this paper, by the generalized two-
component extreme value (GTCEV) distribution, of
which the TCEV distribution is a special case. The reason
for analyzing the second-simplest case is that the simplest
case is not appropriate, as population a cannot be de-
scribed by a Gumbel distribution. The combination of
two GEV distributions is not suitable, as population b is
too small to estimate the shape parameter u.

For a GTCEV distribution to become apparent in the
data, three conditions have to be fulfilled. First, the se-
ries length in years Y should amply exceed the return
period TC of the crossing point C. Second, the sampling
period p should be sufficiently large to achieve con-
vergence for the extremes of both populations a and b
to their respective limits Ga(u) and Gb(u). Third, the
sampling period p should be much smaller than TC, since
in the opposite case Ga(u) → 1 and hence the GTCEV
approaches Gb(u), which is the ultimate extreme value
limit of both Gb(u) and Ga,b(u). Note however, that the
detection of the presence of a GTCEV distribution is
easiest for ua . 0, as in the opposite case Ga(u) curves
upwardly so that the GTCEV distribution becomes more
difficult to distinguish from a single-component GEV

distribution with ua , 0. Figure 1 may help to illustrate
these points.

3. Data handling

In empirical studies, the parameters of the GEV dis-
tribution Gp(u) are obtained from a series with a finite
length of Y yr. Taking the maxima of every p yr, n values
remain to fit, with

Y
n 5 . (17)

p

Traditionally, the GEV distribution is applied to the an-
nual maxima, so with sample period p 5 1, giving n 5
Y values to fit. This practice implicitly assumes that
convergence to the GEV limit [Eq. (3)] is achieved for
m 5 r, with r ø 50, the effective number of independent
daily averaged wind speeds in a year (Coles 2001, p.
98). This number r is less than 365 because exceedances
of a high threshold tend to occur in clusters. It depends
on the mathematical form of the parent distribution F(u)
whether the annual maxima have indeed converged to
the asymptotic distribution Gp51(u) for m ø 50. If the
convergence is too incomplete for p 5 1 to achieve a
meaningful GEV analysis, one remedy is to increase the
sampling period p. However, this leads to a proportion-
ally decreased number of points n on which the GEV
fit is based, and hence to increased sampling noise and
standard errors in the parameter estimation of the GEV
distribution. In our analysis, we apply an alternative
method, namely to improve convergence by transform-
ing the data in such a way that they become distributed
according to a faster converging parent distribution. The
method makes use of the fact that, for extratropical wind
speeds, the Weibull distribution is well established as
the parent distribution:

k2(u/a)F(u) 5 1 2 e , (18)

with u the wind speed, a the Weibull scale parameter,
and k the Weibull shape parameter. Theory shows that
the maxima of observations from a Weibull distribution
converge asymptotically (for any k . 0) to the Gumbel
distribution, with the convergence rate depending on k,
being largest for the exponential distribution (k 5 1)
(Embrechts et al. 1997; Cook and Harris 2001). Hence,
improved convergence to the Gumbel distribution can
be obtained if uk instead of u is the fitted parameter, as
this transforms the Weibull distribution into an expo-
nential distribution. We made use of this property, and
determined k in the tail of the parent distribution, after
which the parameter uk was fitted to a GEV distribution
[Eqs. (6),(7)]. The underlying conjecture is that, even
if deviations from the Weibull distribution in the far tail
would lead to convergence to the GEV distribution in-
stead of to the Gumbel distribution, the convergence
rate to that GEV distribution is still faster for uk than
for u.

In the analysis of wind maxima, we restrict ourself



1 DECEMBER 2004 4567V A N D E N B R I N K E T A L .

FIG. 2. Visualization of the procedure to detect GTCEV distribu-
tions. The 104-yr return value u , estimated by fitting the GEV4100,10

distribution to the centennial maxima, is compared to the 104-yr return
value u , estimated by fitting the GEV fit to the annual maxima.41,10

Ga(uk) is the estimate of the maxima of population Fa(u) and Gb(uk)
is the estimate of population b. For this case u 5 42.5 m s21 and41,10

u 5 51.6 m s21, and s 5 0.9 m s21 (indicated by the bar).4 4100,10 u,1,10

The uncertainty in the fit to centennial maxima s 5 2.1 m s21,4u,100,10

giving SN 5 3.9. According to (23), this implies detection of a
GTCEV distribution, and hence of a double population in the extreme
winds. Shown is a set of 3509 daily averaged annual maxima from
the greenhouse run at (478N, 68E). The vertical axis is linear in uk,
with k 5 1.74.

to the storm season (October–March) instead of to the
annual maxima, assuming better homogeneity of the
parent distribution within the storm season (Dillingh et
al. 1993).

a. GEV parameter estimation

The parameters of the GEV distribution were esti-
mated by the method of probability-weighted moments
(Hosking et al. 1985). We also used his estimate of the
plot positions:

i 2 0.35
ix 5 2ln 2ln , (19)1 2[ ]n

with xi the plot position of the ith maximum in the set
of n ordered maxima. Equation 19 can be regarded as a
discrete version of (9). The estimated return value of the
wind speed up,T for a given x [which is determined by
the sample period p and return period T via (12)] follows
from inverting (7) and back-transforming uk to u:

1/k
ap 2u xpu 5 m 1 (1 2 e ) , (20)p,T p[ ]u

with k the Weibull shape parameter. Neglecting the sam-
pling error in the Weibull shape parameter k, the stan-
dard error su,p,T in the estimated return value up,T is
calculated by the so-called delta method (see, e.g., Coles
2001, p. 33):

2 Ts 5 =u V=uu,p,T (21)

with

T
]u ]u ]u

=u 5 , ,1 2]m ]a ]u

and V the variance–covariance matrix
2s s s m ma mu

 
2V 5 s s s , ma a au 

2s s s mu au u

with sm the standard error of m etc. The values of V are
given by Hosking et al. (1985).

b. Detection of two-component extreme value
distributions

The statistical analysis was performed in four steps:
First, the Weibull parameters a and k were determined
for each grid point on the Northern Hemisphere. These
parameters a and k were obtained by least mean-square
fitting all daily wind speeds with u . a (i.e., the upper
e21 part of the distribution, to exclude the influence of
the lower wind speeds) in the winter season in a 150-
yr record, hence 9932 daily values per grid point. Sec-
ond, the GEV distribution was fitted to the set of 3509
annual maxima uk for each grid point, so with p 5 1

and n 5 Y 5 3509. The third step was to identify pos-
sible GTCEV distributions, that is, locations where the
extreme value distribution originates from populations
a and b. In that procedure, we assume that the data are
GTCEV-distributed if the 104-yr return value as ob-
tained from the GEV fit to p-yearly sampled maxima
u exceeds the 104-yr return value as obtained from4p,10

the GEV fit to annual maxima u by more than two41,10

standard deviations. Expressed in a signal-to-noise ra-
tio SN

u 2 u4 4p,10 1,10SN [ , (22)
2 2Ïs 1 s4 4u,p,10 u,1,10

the criterion reads

SN . 2, (23)

where s is the sampling uncertainty in u , and4 4u,1,10 1,10

s the standard error in u when fitting a GEV4 4u,p,10 p,10

distribution to p-yearly sampled maxima originating
from Gp51(uk) [using (11) to calculate mp and ap]. If
the wind were single-populated, then the probability is
less than 5% that criterion (23) would result in erro-
neously concluding that wind is double populated. (This
probability is, due to the skew distribution of rare return
levels, somewhat larger than the 2.5% corresponding
with a normal distribution.) This process is visualized
in Fig. 2, which shows 3509 annual maxima with the
fitted GEV distributions to the annual (p 5 1) and cen-
tennial maxima (p 5 100). We will apply (22) to annual
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and centennial maxima, although the outcome is rather
robust for other choices of p.

The fourth step was to estimate the GTCEV distri-
bution Ga,b(u) for specific grid points where SN . 2.
Here, we assumed that Fb(u) is also Weibull distributed
with the same shape parameter k as Fa(u). Gb(u) was
estimated from the maxima which deviate considerably
from the GEV fit to annual maxima, and Ga(uk) by
adjusting ma, aa, and ua iteratively in such a way that
fitting a GEV distribution to the given distribution
Ga,b(uk) [assuming that Gb(uk) is correctly estimated
from the deviating maxima] results in the same GEV
parameters as the original dataset. From Ga(uk) and
Gb(uk), the intersection point C and the corresponding
return period TC were derived.

4. ECBilt-Clio Model description

The climate model used in this study is a coupled
atmosphere–ocean–sea ice model of intermediate com-
plexity, called ECBilt-Clio [referred to as ECBilt in van
den Brink et al. (2003)]. The atmospheric component
‘‘ECBilt’’ is a spectral T21 global three-level quasi/
geostrophic model. The atmospheric time step is 4 h. It
is coupled to a dynamic ocean model ‘‘Clio,’’ which
has a dynamic sea ice component and a relatively so-
phisticated parameterization of vertical mixing (Goosse
and Fichefet 1999). For a more detailed description of
the model, we refer to Opsteegh et al. (1998), Goosse
and Fichefet (1999), and van den Brink et al. (2004).

a. Experimental setup

A transient run was generated for the period 1860–
2080, using historical greenhouse forcings for 1860–
2000, and the Special Report on Emissions Scenarios
(SRES) A1B CO2 emission scenario (Nakicenovic
2000) for 2000–80. This emission scenario results in
approximately doubled CO2 concentrations in 2050 (550
ppm) with respect to the emission in 1860 (290 ppm).

An ensemble of 121 runs of 30 yr each was generated,
starting from the situation in 1960 of the transient run.
The set of all 121 runs for the period 1960–89 is called
the control experiment. For each grid point, vector-av-
eraged daily mean extreme wind speeds were sampled
from each October–March period in the set, giving 29
extremes per ensemble member and grid point, and 3509
extremes per grid point for the entire control experiment.
Note that we often refer to annual extremes, whereas
only storm-season extremes are sampled. For five en-
semble runs, also all 27 000 daily averaged wind speeds
in each grid point in the storm season were archived.

We also generated 121 ensembles runs of 30-yr start-
ing from the situation in 2050 of the transient run. This
set for the period 2050–79 is called the greenhouse
experiment. As before, the series from which the ex-
tremes are sampled has a total length Y of 3509 yr, and

the subseries for which all daily values were archived
was 150 yr.

b. Validation of extreme statistics

For validation of the extreme wind distribution in
ECBilt-Clio, we used the reanalysis dataset of the Na-
tional Centers for Environmental Prediction (NCEP;
Kalnay et al. 1996). This dataset provides the wind on
a global 2.58 3 2.58 grid every 6 h. We used the July
1965–June 2002 NCEP data. Lacking a 1000-hPa layer
in ECBilt-Clio, we sampled wind speeds at 800 hPa
(;2 km height) instead, being the lowest wind level in
ECBilt-Clio. Comparison of the wind distributions at
850 and 1000 hPa for ocean grid points within the NCEP
data shows similarity between the extreme value dis-
tributions (van den Brink et al. 2003). So, we assume
that the ECBilt-Clio 800-hPa extreme winds have the
same behavior as the extreme surface winds.

A suitable parameter to illustrate the ability of gen-
erating extremes is the GEV location parameter mp51,
as it represents the wind speed that is exceeded on av-
erage once a year. Figure 3 shows mp51 (back-trans-
formed from uk to the wind u) as estimated from the
3509 annual wind extremes in the control experiment
of ECBilt-Clio at 800 hPa and from the 36 annual wind
extremes in the NCEP dataset at 850 hPa, respectively.
Figure 3 shows an overall agreement in the patterns over
sea, although the position of the storm tracks in ECBilt-
Clio and NCEP are slightly different, with the Pacific
storm track in ECBilt-Clio being too strong. Enhanced
land–sea gradients and underestimations over land are
apparent in ECBilt-Clio, probably caused by the sim-
plified parameterizations of the boundary layer over
land and the extremely low vertical resolution.

The wind speeds with return periods longer than 102

yr are considerably larger in ECBilt-Clio than in NCEP.
This is illustrated in Fig. 4 for grid point (478N, 658W),
for which ECBilt-Clio and NCEP have comparable es-
timates of the annual wind mp51, but differ considerably
for larger return periods. Apparently, the variability in
extremes is much larger in ECBilt-Clio than in the
NCEP data.

In conclusion, it is clear that in the verification of
ECBilt-Clio, considerable differences emerge. This is
to be expected from models of intermediate complexity
like ECBilt-Clio. Despite these shortcomings, the EC-
Bilt-Clio values seem close enough to reality to justify
studies like the present one, that is, exploration of the
statistical nature of extreme winds, like the potential
existence of a double population. However, it should be
emphasized that the question of the reality of specific
features generated in ECBilt-Clio can only be answered
with results of models of higher complexity.
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FIG. 3. Location parameter mp51 of the annual wind speeds, estimated from fitting a GEV
distribution to (left) the ECBilt-Clio control experiment (3509 yr) and to (right) NCEP dataset
(36 yr). The location parameter mp51 represents the wind speed, which is exceeded on average
once a year. Values larger than 30 m s21 and smaller than 15 m s21 are shaded.

FIG. 4. Distribution of the annual maxima at 478N, 658W in ECBilt-
Clio and NCEP. The variability in extremes in ECBilt-Clio is con-
siderably larger than in the NCEP data.

5. Results

a. Spatial distribution of GEV parameters in the
control experiment

The estimated GEV scale parameter ap51 and shape
parameter up51 of the daily averaged annual maxima of
the wind speed for the EcBilt-Clio control experiment
at 800 hPa are shown in Fig. 5. All three GEV param-
eters are largest over the oceanic storm tracks. In these
regions, up51 is lightly positive, that is, downwardly
curved on a Gumbel plot. A possible reason might be
that here there is a physical upper limit to the wind
speed (although this limit is far beyond the 104-yr wind).
The small range of absolute values of u in Fig. 5b in-
dicates that the annual maxima of uk in EcBilt-Clio do
not strongly deviate from the Gumbel distribution.

b. Two-component extreme value distributions in the
control experiment

The spatial distribution of SN is shown in Fig. 6 for
| SN | . 1.5. Only patterns of large positive signal-to-
ratios SN are detected. This indicates the reality of the
patterns, as only situations with positive SN can be at-
tributed to second populations. For 9.4% of the area
shown in Fig. 6, SN is larger than 2, which is a factor
2 more than the expected 5% from Monte Carlo sim-
ulations. Figure 6 shows patterns of SN that fulfill our
criterion [Eq. (23)] over the Atlantic, the east Pacific
and Siberia, which indicates that in the control run, dou-
ble populations in the extreme wind speeds are apparent
at the end of both storm tracks.

c. Greenhouse effect on wind extremes

The change in the annual extreme wind due to the
greenhouse effect is represented by the change in the
GEV location parameter mp51, shown in Fig. 7. It shows
a significant increase of the once-a-year exceeded wind
speed over the northern Atlantic and Europe, as well as
over the Pacific and North America. Maximum increase
(5%) is found over Scandinavia. Comparison with Fig.
3 shows a zonally more elongated storm track, which
is consistent with the positive NAO-like response to
enhanced greenhouse gas forcing in EcBilt-Clio (Fig.
11 in Schaeffer et al. 2003, manuscript submitted to
Climate Dyn.). Apparently, the change in the annual
wind maxima mp51 behaves similarly to the change in
the mean wind in winter.

The regions where TCEV distributions are detected
in the greenhouse experiment are shown in Fig. 8. It
shows the same patterns as in the control run, with the
Atlantic region shifted to the east and elongated from
Spain to Finland. For 10.6% of the area shown in Fig.
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FIG. 5. Estimated (left) GEV scale parameter ap51 (back-transformed from uk to u) and (right)
shape parameter up51 of the daily averaged wind speed for the EcBilt-Clio control experiment at
800 hPa as derived from 3509 annual maxima of uk. In the left panel values larger than 3.5 and
smaller than 2.0 are shaded; in the right panel positive values are shaded. The standard error su

according to Hosking et al. (1985) is between 0.012 and 0.015.

FIG. 6. Signal-to-noise ratio SN for | SN | . 1.5 in the control
experiment. According to our criterion (23), SN . 2 indicates the
existence of a double population.

FIG. 7. Relative changes (%) in the GEV location parameter mp51

due to the greenhouse effect. The shaded areas are significant at 5%
level.

8, SN is larger than 2, which is a slight increase with
respect to the control run.

6. Meteorology of the second population

Close inspection of the grid points with large positive
SN reveals that the deviating extremes of neighboring
grid points all originate from a restricted number of
storms. Apparently, the storms are so intense, that they
influence the highest extremes over a larger area during
their track to the east.

To find the meteorological circumstances responsible
for this second population, we concentrate on the events

which clearly belong to that second population. We will
consider grid point (428N, 178W) in the control run, for
which the maximum signal-to-noise ratio SN of 3.8 oc-
curs. Figure 9 shows that the three most severe events
substantially deviate from the fit, and thus can safely
be assumed to originate from the second population.
This is also apparent from the fact that SN decreases
from 3.8 to 0.1 K 2 if these three points are omitted
from the dataset, which means that there is no significant
detection of a second distribution possible without the
three largest events. The relative vorticity for the most
extreme event is shown in Fig. 10. In the first 2 days,
it displays a mature cyclone which is no longer devel-
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FIG. 8. Signal-to-noise ratio SN for | SN | . 1.5 in the greenhouse
experiment. According to our criterion (23), SN . 2 indicates the
existence of a double population.

FIG. 9. Gumbel plot for grid point (428N, 178W) in the control run.
The signal-to-noise ratio SN according to (22) is 3.8. The three most
severe events especially deviate from the fit and are assumed to orig-
inate from the second population. The vertical scale is linear in uk,
with k 5 1.71.

FIG. 10. Daily averaged 800-hPa relative vorticity (1025 s21) during merging. At day 4, the most extreme
wind in 3509 yr is reached at the location indicated by a black dot (428N, 178W).
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FIG. 11. (top) Mean streamfunction Ca of the first population a
and (bottom) the difference Can between the second population b and
the first population a.

oping. However, at day 3, another cyclone is starting to
merge with the original cyclone, resulting in explosive
cyclogenesis and extreme wind speeds at the location
of interest until day 5. After day 5, the decay phase of
the eddy sets in. The importance of wave merging for
the process of explosive cyclogenesis is stressed in sev-
eral observational studies of cyclogenesis, for example,
Hakim et al. (1995, 1996) and Gaza and Bosart (1990).
In our results, merging occurs in the 1st, 2d, 3d, and
5th most extreme events, but not in the situations of the
other 10 largest extremes. We hypothesize that merging
is a crucial condition for a second population of extreme
wind speeds to occur.

Analysis of normal annual extremes shows that, at
this location, wave merging is not exceptional. So, al-
though important for the cyclogenesis process, it is
clearly not a sufficient condition for a second population
to occur. To distinguish between normal annual ex-
tremes and the merging events of the second population,
we examined the anomalous time mean 500-hPa stream-
function pattern. The anomaly pattern was computed by
first averaging the 500-hPa streamfunction C over a
period of 7 days preceding the day for which the max-
imum wind occurred in the grid point (428N, 178W).
This was done for 600 cases belonging to the first pop-
ulation a, and the four cases belonging to the second
population b. The anomalous pattern Can is defined as
the mean of the mentioned cases Cb minus the mean
of the 600 cases Ca in the area between 208 and 658N
and between 808 and 108W:

C 5 C 2 C ,an b a

600 41 1
C 5 C , C 5 C , (24)O Oa a,i b b,i600 4i51 i51

where Ca,i is the 7-day averaged 500-hPa streamfunc-
tion pattern of case i in the first population a, and Cb,i

is the same for the second population b. Figure 11 dis-
plays Ca and Can, and Fig. 12 the corresponding zonal
wind pattern.

Figure 11 and 12 show that annual extremes develop
in a mean circulation which is in a strong westerly phase,
with maximum time mean zonal winds of 24 m s21.
The anomaly pattern of the second population has a
large positive amplitude in the model’s version of the
North Atlantic Oscillation pattern, and leads to a much
stronger jet than normal annual extremes (up to 31 m s21).
The pattern has an extension in the easterly direction.
We have computed the probability that the anomaly pat-
tern of a member in the first population projects just as
strong on the Can pattern as the four members of the
second population. For the projection we used the
squared norm:

^C 2 C , C &a,i a anp 5 . (25)i ^C , C &an an

The events of population a will have an average pro-
jection of zero, and population b of one.

There are only six events of the 600 with a projection
larger than unity, which means that the location and
intensity of the jet stream of the second population has
a frequency of order once in 102 yr. Another striking
feature of the second population is that the events are
accompanied by extreme precipitation, where large-
scale precipitation and convective precipitation contrib-
ute equally. All four events of the second population
have daily precipitation rates which have return periods
of order 103 yr.

We tentatively conclude that an extremely strong jet
stream in which wave merging occurs can generate con-
ditions which are favorable for the occurrence of strong
diabatic feedbacks. This leads to anomalously strong
cyclogenesis and the generation of a second population
of wind extremes.

We checked this hypothesis with the data from the
greenhouse experiment. We consider grid point (478N,
58E), which has a maximum in the signal-to-noise ratio
SN of 3.9. Here, the 1st to 7th and 10th largest extremes
belong to cyclones that originated after merging. Skip-
ping the seven largest events from the dataset reduces
SN from 3.9 to 0.35 K 2. So, again, the detection is
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FIG. 12. Time mean zonal wind at 500 hPa of (top) the first
population, (middle) the second population, and (bottom) their dif-
ference.

only significant when the merging events are incorpo-
rated.

Projection on the area between 808W and 108E and
between 208 and 658N shows an increase of the maxi-
mum mean zonal wind from 22 to 31 m s21. Once in
56 yr, the projection is larger than unity. Also the pre-

cipitation rates are extraordinary. For six of the seven
events, the return periods of the precipitation rates are
of order 103 yr. So, our hypothesis based on the control
experiment is confirmed by the results of the greenhouse
experiment.

We conclude that the extreme wind speed belongs to
a second population if the following three conditions
are fulfilled: First, there is an intense jet stream, cor-
responding with a positive NAO. Second, two cyclones
merge to a single intense cyclone. Third, the cyclone is
accompanied by extreme precipitation.

7. Discussion and conclusions

The climate model ECBilt-Clio shows preferred re-
gions for the extratropics in which the annual wind ex-
tremes with return periods of order 103 yr belong to
another population than the more frequent annual winds.
One consequence of this result is that in such regions,
the 104-yr wind speed can not be estimated from annual
extremes in observed series with time lengths of order
100 years. Only a lower limit of the 104-yr wind can
be estimated from such a series, as the existence of a
second population in the extremes always increases the
104-yr wind. Another, closely related, consequence is
that this low frequency of the second population pre-
vents detection from single-station observational rec-
ords.

We found that the second population in EcBilt-Clio
exists of merging cyclones embedded in a strong jet
stream, and that they are accompanied with extreme
precipitation. The robustness of these results has to be
confirmed by analyzing the results of more advanced
models.

Doubling of the greenhouse gas concentrations has
two important effects on the second population in the
wind speed. The first is that the regions change for which
second populations appear. This implies that regions,
which are single populated in the current climate, may
be double populated in a doubled CO2 climate and vice
versa. The second effect of CO2 doubling in EcBilt-Clio
is that, in double-populated areas, the frequency of cy-
clones from the second population increases. Whereas
the second population is dominant over the first popu-
lation for return periods of 600 yr and larger for the
control run, this turning point lays at a return period of
40 yr for the greenhouse run. This implies that not only
the 104-yr winds are influenced by the second popula-
tion, but also the 102-yr winds.

We attribute the eastward shift of the Atlantic area
with double populations in the greenhouse experiment
to the response in the climatological winter mean, which
resembles a positive NAO pattern with largest westerly
wind increase over Scandinavia (see Fig. 11 in Schaeffer
et al. 2003, manuscript submitted to Climate Dyn.). This
response causes the eastward elongation of the storm
track as shown in Fig. 7, and consequently of the area
in which a second population occurs.
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