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Ensemble simulations with a total length of 7540 years are generated with a
climate model, and coupled to a simple surge model to transform the wind field
over the North Sea to the skew surge level at Delfzijl, The Netherlands. The 65
constructed surge records, each with a record length of 116 years, are analysed
with the generalized extreme value (GEV) and the generalized Pareto
distribution (GPD) to study both the model and sample uncertainty in surge
level estimates with a return period of 104 years, as derived from 116-year
records. The optimal choice of the threshold, needed for an unbiased GPD
estimate from peak over threshold (POT) values, cannot be determined
objectively from a 100-year dataset. This fact, in combination with the
sensitivity of the GPD estimate to the threshold, and its tendency towards too
low estimates, leaves the application of the GEV distribution to storm-season
maxima as the best approach. If the GPD analysis is applied, then the
exceedance rate, l, chosen should not be larger than 4. The climate model hints
at the existence of a second population of very intense storms. As the existence of
such a second population can never be excluded from a 100-year record, the
estimated 104-year wind-speed from such records has always to be interpreted as
a lower limit.
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1. Introduction

In The Netherlands, a probability of 10K4 yearK1 for flooding from the sea is used
as baseline for dike design (Deltacommissie 1960). Several problems arise when
translating this ‘accepted risk’ into the sea-level being exceeded (on average)
only once in 104 years. First, as the observational records of tidal stations are
only 102 years in length, the surge level with an average return period of 104

years requires an extrapolation of two orders of magnitude. It is unclear how
reliable the estimate from such an extrapolation is. Second, various probability
functions can be fitted to the observational records of extreme surges, leading to
different results in the 104-year return levels (de Haan 1990; Dillingh et al. 1993).
Third, extrapolation from observational records does not contain information
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about surges in a greenhouse gas-induced changing climate. Fourth, a second
population of rare but intense storms, originating from a different kind of
meteorological system, would result in higher return values than estimated from
standard extreme-value analysis of the available short records.

These problems are explored by analysing two very long surge records for the
Dutch coastal station Delfzijl, which were generated by a climate model. One
series refers to the present-day climate; the second to the future (doubled
greenhouse gas concentration) conditions. The length of these series (order 104

years) allow us to explore the far tail of the distribution, as well as for
uncertainty estimates of the return values if calculated from much shorter (order
102-years) subsets.
2. Model descriptions

Wind data are generated by the general circulation model ECBilt–Clio,
consisting of an ocean model Clio (Goose & Fichefet 1999) and an atmospheric
model ECBilt (Opsteegh et al. 1998, 2001). ECBilt is a spectral T21 global three-
level quasi-geostrophic model, with a time-step of 4 h. The T21-resolution
corresponds (for the latitudes of interest) with a grid-point distance of
approximately 500 km.

The surge model we used is a simplified version of the Timmerman model
(Timmerman 1977). It is described and validated in van den Brink et al. (2003).
We calculated a surge level every 12 h.
3. Methodology

(a) Extreme value distributions

There are two commonly applied approaches in extreme value statistics. In the
first approach, ‘block maxima’ are considered, to which the generalized extreme
value (GEV) distribution is applied. The GEV distribution function is given by

GEVZPðY%yÞZ exp K 1K
q

a
ðyKmÞ

� �1=q !
; (3.1)

with m the location parameter, a the scale parameter, q the shape parameter and
y the block maximum of the considered variable (de Haan 1976).

In the second approach, all values above a certain threshold u are considered.
To these ‘peak over threshold’ (POT) values, the generalized Pareto distribution
(GPD) is applied. The GPD distribution function is given by

GPDl ZPðY Ku%yjYOuÞZ 1K 1K
q

a
ðyKmÞ

� �1=q
; (3.2)

with m the location parameter, a the scale parameter, q the shape parameter and
y the variable above a chosen threshold u. We follow the common approach to
choose m equal to the threshold u (Palutikof et al. 1999). The exceedance rate, l,
which depends on the threshold, u, is estimated as the average number of
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exceedances over the threshold u per ‘block’. From both approaches, the level
belonging to a given probability of exceedance can be estimated by inverting
equations (3.1) and (3.2).

The shape parameters q of the GEV and the GPD distributions are equal if the
threshold is large enough (Katz et al. 2002).

In order to obtain an optimal estimate, it is desirable that the estimate is both
unbiased (i.e. with the right expected value) and efficient (i.e. with a small
uncertainty). The uncertainty depends mainly on the number of samples that are
considered, whereas a systematic bias will be introduced if a wrong distribution is
used to describe the data. As both the GPD and the GEV distribution describe
only the ‘tail’ of the parent distribution, a bias will be introduced if samples that
do not belong to this tail are also considered. The samples that belong to the tail,
in the sense that they can be described with the same parameters as the more
extreme events, depends on the convergence rate of the parent distribution to the
asymptotic extreme value distribution. For the block maxima approach, this
convergence is assumed beforehand, whereas for the POT approach, this
question is commonly answered empirically, making use of the fact that for the
tail, the estimated shape parameter q should be independent of the threshold u,
and thus of the exceedance rate l. This can be explored by plotting the estimated
shape parameter q as a function of the threshold u or the exceedance rate l. The
chosen l is then the largest one for which q is stable (de Haan 1990; Coles 2001).
If there are strong fluctuations or trends in the estimated q, then quantile
estimates are difficult to obtain (e.g. Brabson & Palutikof 2000).

Thus, the larger sample set that is considered in the POT approach (if lO1)
makes this method more efficient than the ‘block maxima approach’. On the
other hand, the POT approach is probably more biased, as samples less far in the
tail of the distribution are also used.

For a further overview of the advantages and disadvantages of the POT
approach and the block maxima approach, we refer the reader to Palutikof et al.
(1999).
(b) Set-up of the numerical experiment

With ECBilt–Clio, 260 runs of 30 years each were generated, with a CO2

concentration according to the period between 1960 and 1989 (320 ppm on
average). In addition to the control run, we also generated 233 ensemble runs of
30 years with estimated CO2 concentrations according to the period between
2050 and 2079 (following the SRES A1B CO2 emission scenario; Houghton et al.
2001). This emission scenario results in approximately doubled CO2 concen-
tration (620 ppm on average) from 2050 to 2079 with respect to the control run.

As every 30-year run contains 29 storm season periods, we have 260!
29Z7540 block maxima for the control run, and 6902 for the greenhouse run.
(c) Data handling

To remove dependent events from the POT selection, we require a minimal
time separation between selected events of 96 h (see de Haan 1990).

We concentrate on storm season events (October until March) to improve
homogeneity of the dataset (de Haan 1990). We applied the surge model to
Phil. Trans. R. Soc. A (2005)



Figure 1. Number of exceedances l per storm season (October to March) as a function of the
threshold u for the observations and the ECBilt–Clio data. The vertical scale is logarithmical.

Figure 2. Return-level plot for the observational set and the ECBilt–Clio set. The lines are GEV-
and GPD-fits with exceedance rate lZ3 for both sets. The horizontal scale is logarithmical.
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the ECBilt–Clio grid point (68E, 478N). This grid point best represents the North
Sea winds (van den Brink et al. 2003).

We calculated the parameters of the GEV and GPD distributions via the
method of maximum likelihood (Coles 2001). The 95% confidence levels were
estimated from the profile likelihood (Coles 2001).

Figure 1 shows the number of exceedances l as a function of the threshold u for
the observations and the ECBilt–Clio data. ECBilt–Clio has somewhat fewer
exceedances over a given threshold than the observations. In this study, we
compare both records for situations with equal exceedance rate l, which means
that for the observational record, a higher threshold is chosen than for the
ECBilt–Clio record.

Figure 2 shows a return-level plot for the observational set and the ECBilt–
Clio set. The extremes of ECBilt–Clio are in reasonable agreement for return
Phil. Trans. R. Soc. A (2005)
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Figure 3. The estimated 104-year return level for the surge as a function of the corresponding shape
parameter q for 65 subsets (each of 116 years length) from the ECBilt–Clio control run. Shown are
the GEV estimates (a) and the GPD estimates for exceedance rate lZ1 (b). Also shown are the
estimates from the total ECBilt–Clio control run of 7540 storm seasons (circle), and the estimate
from the 1883 to 1999 observational set of Delfzijl (square).
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periods of up to 50 years. For return periods larger than 50 years, the extremes in
ECBilt–Clio are higher than in the observational set.
4. Results

(a) Dependence of 104-year estimate on model choice

With the control run, we tested the uncertainty in the extrapolation of the
extreme surges for Delfzijl. We applied the GPD distribution to the 116-year
observational surge record of Delfzijl (1883–1999) to 65 subsets of 116 years each
of ECBilt–Clio, and to the total set of 7540 years, for several choices of l. We also
applied the GEV distribution to the storm season block maxima of all these sets.
The 104-year estimates are shown in figure 3 as a function of the estimated shape
parameter q from the GEV distribution (panel a) and from the GPDlZ1

distribution (panel b). Figure 3 shows the following features. First, both panels
resemble the strong correlation between the estimated shape parameter q and the
estimated 104-year return level. Second, the 104-year estimate from the total
7540-year ECBilt–Clio set are similar for the GEV (8.29 m; 7.21, 10.9) and the
GPDlZ1 estimate (7.87 m (7.28, 8.62); the values between brackets are the lower
and upper 95% confidence levels). Third, the lower GPDlZ1 estimate (4.66 m
(3.70, 8.95)) than the GEV estimate (5.85 m (4.17, 11.5)) for the observations
indicates that the two approaches can result in considerably different 104-year
estimates (although they do not differ significantly in this case). Fourth, the 104-
year estimates of the 116-year ECBilt–Clio subsets vary considerably, between 4
and 20 m, both for the GEV and the GPDlZ1 estimates.

(b) Dependence of GPD 104-year estimate on exceedance rate

We now want to explore if lO1 makes application of the GPD distribution
more efficient than the GEV distribution. Figure 4 shows the estimated GPD
shape parameters and 104-year return levels as a function of l. Figure 4a shows
Phil. Trans. R. Soc. A (2005)



Figure 4. (a) Estimated shape parameters q of the GPD distribution for the surge in Delfzijl
according to the total 7540-year ECBilt–Clio set as a function of the exceedance rate l. Also shown
are estimates from two arbitrarily chosen 116-year ECBilt–Clio subsets (set 1, set 2), and the
observational set. (b) The corresponding 104-year surge levels. The horizontal axes are logarithmical.
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the estimates from the total 7540-year set, two arbitrarily chosen 116 year
ECBilt–Clio sets and the observational set. Figure 4b gives the estimated
104-year surge levels for the same sets.

Figure 4 gives the following information. First, if l!1, then the estimate of q
(and thus the 104-year estimate) from a 116-year subset is very sensitive to l, which
is undesirable. Second, also for lO1, considerable fluctuations in the estimated
shape parameter q remain in 116-year sets, as both the two ECBilt–Clio sets and
the observational set show. This fact, together with the different ‘stable’ regions for
q of the two ECBilt–Clio 116-year subsets, makes it difficult or even impossible to
choose an optimal value of l from a 116-year record. Third, the two 116-year
ECBilt–Clio subsets remain for all l’s either below or above the estimate of the
total 7540-year ECBilt–Clio set. Fourth, even the estimates of the total 7540-year
ECBilt–Clio set are not threshold independent. This suggests that the upward
slope of q (for lO4) in figure 4a—and the corresponding decreasing 104-year
estimate in figure 4b—is a bias caused by samples that do not belong to the tail of
the parent distribution. Fifth, the fact that the estimates from the observational
set are within the ECBilt–Clio range for the GEV and the GPD distribution for
l(3, but outside that range for lT3, might indicate that the observational set is
even more biased for large values of l than the ECBilt–Clio set.

We conclude that l should be in the range of between 1 and 4 to have the least
biased, 104-year surge estimate. However, such a range can only be determined
from an extremely long dataset. Datasets of the order of 100 years are too short
to determine a maximal choice of l (and thus of the minimal threshold) that
results in an unbiased estimate. The strong dependence of the GPD estimates on
the choice of l makes it difficult, even impossible, to obtain reliable unbiased
GPD estimated 104-year surge levels from 102-year records.
(c) Optimal choice for threshold

In order to investigate the bias in more detail, we determine the fraction of the
65 subsets for which the actual value lies outside the 95% confidence interval.
Phil. Trans. R. Soc. A (2005)



Figure 5. Percentages of the number of sets that do not contain the real value within its 95%
confidence intervals, estimated with the GPDl-distribution for different exceedance rates l, and
with the GEV distribution. The real value is chosen to be the actual 100-year value of the 7540-
year set in (a,b), the 104-year GEV estimate of the 7540-year set in (c,d), and the 104-year GPDlZ3

estimate of the 7540-year set in (e,f ). Left: 65 116-year subsets; Right: 1000 116-year sets,
randomly sampled from the total ECBilt–Clio set.
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These percentages are shown in figure 5a for a return period of 100 years, split
out to the lower and upper 95% confidence level. The actual 100-year value is
4.20 m (according to figure 2). The open circles in figure 5a show that the fraction
of upper 95% confidence levels is larger than 2.5% for all exceedance rates, except
between 2 and 4. For lR5, the number of subsets for which the upper 95%
confidence levels is below the actual value is large, whereas for none of the 65
Phil. Trans. R. Soc. A (2005)
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subsets the actual value is below the lower 95% confidence levels. This indicates
the existence of bias towards too low values.

Fitting a GEV distribution to the 65 subsets gives one subset for which the
100-year upper 95% confidence level is lower than the actual value, and one
subset for which the lower 95% confidence level is higher than the actual 100-year
value. The corresponding percentages are plotted at the right side of figure 5a.

To highlight the effects of figure 5a, the calculations are repeated, but, this
time, they are based on 1000 116-years subsets, obtained by randomly sampling
from the total ECBilt–Clio set, in order to decrease the noise. The results for a
return period of 100 years are shown in figure 5b. This confirms the findings of
figure 5a that there is a bias in the GPDl estimates. Whereas figure 5a did not
indicate a bias for lZ3, figure 5b shows that there is a small bias for l!4, which
strongly increases for lO4. Figure 5b indicates no bias in the GEV estimates
(about 2.5% of the upper 95% confidence intervals is lower than the actual value,
and about 2.5% of the lower 95% confidence intervals is above the actual value).

For the 104-year return periods, the percentages exceeding the upper and
lower 95% confidence intervals are depicted in figure 5c–f. In this case (i.e. for
104-year return periods), the ‘real’ value for the 104-year return value has to be
chosen, as it cannot be determined directly from figure 2. As possible real values,
we considered both the GEV and the GPDlZ3 estimates, as obtained from the
total 7540-year set. The reason for considering lZ3 in the GPD estimate is
that this value of the exceedance rate l turns out to be the best, according to
figure 5a. Another reason is that the GPDlZ3 estimate is correct for a 100-year
return period (figure 2).

Figure 5c,e shows the results for the 65 subsets, respectively, taking the
104-year GEV estimate (8.29 m) as the real value and the 104-year GPDlZ3

estimate (7.78 m). Figure 5d,f shows the results for the 1000 sampled subsets.
We see an even stronger bias towards too low values for the 104 year return

periods than for the 100-year return periods for the GPD estimates if lO4 (note
the different vertical range of figure 5c–f with respect to figure 5a,b). No bias is
detected for the GEV estimates in the situation that the 104-year GEV estimate
is taken as real value (figure 5d), and for the GPD estimates if 1!l!4 in the
situation that the 104-year GPDlZ3 estimate is taken as real value (figure 5f ), as
expected from consistency.

We conclude from figure 5 that the GPD estimates are more sensitive to bias
than the GEV estimates, especially if the exceedance rate lO4. The GEV
estimates are unbiased. This leaves the GEV analysis as the preferred method.
(d) Greenhouse effect on wind

The effect of the greenhouse doubling on the extreme wind-speed in ECBilt–
Clio for the North Sea grid point is shown in figure 6. Up to return periods of
approximately 100 years, no effect is apparent. However, for wind-speeds with
return periods of more than 250 years, the greenhouse run deviates system-
atically from the fitted GEV distribution. This suggests the existence of a second
population in the extreme wind distribution. Fitting the GEV distribution to the
deviating extremes only, results in a considerably higher 104-year return value
for the wind-speed than fitting to the total set. For a more comprehensive
description, see van den Brink et al. (in press).
Phil. Trans. R. Soc. A (2005)
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Figure 6. Return-level plot of the observed and GEV estimated 12 hourly averaged wind-speeds for
the control and greenhouse runs in ECBilt–Clio for the North Sea representing grid point (68E,
478N). The kink at a return period of 250 years in the greenhouse run suggests the presence of a
double population in the extreme wind distribution.
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5. Discussion and conclusions

The variance in the GEV estimates from 65 records of 116 years indicates that
only a crude estimate of the 104-year surge level can be made from a single record
with a length of the order of 100 years. The GPD estimates give lower 95%
confidence intervals for exceedance rates lO1 than the GEV estimates, but the
total 7540-year ECBilt–Clio set shows that these GPD estimates are biased
towards lower 104-year values.

For the ECBilt–Clio data, the percentage of the 95% confidence levels
containing the actual value can be determined for a return period of 100 years,
and estimated for a return period of 104 years. This analysis points out that
application of the GPD analysis to the ECBilt–Clio data leads to estimates that
are biased towards too low values. We emphasize that this analysis can only be
done for extremely long sets, and thus not for the short observational sets.

The unknown optimal value of the exceedance rate l for the observational set,
combined with the sensitivity of the GPD estimate to the choice of l, and the
tendency for too low estimates leaves, in our opinion, the GEV analysis as the
preferred method to apply to the observational data, despite its large
uncertainty. If the GPD analysis is applied, then the l chosen should not be
larger than 4.

In the future, output of more advanced climate and surge models will be used
to calculate the 104-year surge level and its uncertainty. Another possibility may
be to apply the optimal l, as obtained from the climate model, to the
observational data and still estimate the 104-year surge level and its uncertainty
from the observations.

ECBilt–Clio hints at the excitation of extratropical ‘superstorms’, defined as
storms with more extreme winds than expected from extrapolation of less
extreme events. The fact that this second population is only apparent in the
greenhouse run for this grid point indicates that regions where second
Phil. Trans. R. Soc. A (2005)
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populations exist can be shifted, enhanced or generated by climate change. The
reality of this model-induced second population has yet to be shown (van den
Brink et al. in press). Owing to their extreme rarity, second populations are not
detectable from records of only 100 years in length. Reversing this argument
implies that extrapolations from 100-year records to 104-year return levels are
only valid when the extreme value distribution is single populated. As this
condition can never be proved from 100-year records, the GEV or GPD (or any
other distribution) estimated, 104-year wind-speed from 100-year records always
has to be interpreted as a lower limit.

We thank the anonymous reviewer for their useful suggestions.
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Dillingh, D., de Haan, L., Helmers, R., Können, G. P. & van Malde, J. 1993 De basispeilen langs de

Nederlandse kust; statistisch onderzoek. Technical Report DGW-93.023, Ministerie van
Verkeer en Waterstaat, Directoraat-Generaal Rijkswaterstaat. [In Dutch.]

Goose, H. & Fichefet, T. 1999 Importance of the ice–ocean interactions for the global ocean
circulation: a model study. J. Geophys. Res. 104, 23 337–23 355.

Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K. &
Johnson, C. A. 2001 IPCC Working Group I Third assessment report. Cambridge: Cambridge
University Press.

Katz, R. W., Parlange, M. B. & Naveau, P. 2002 Statistics of extremes in hydrology. Adv. Water
Resour. 25, 1287–1304.

Opsteegh, J. D., Haarsma, R. J. & Selten, F. M. 1998 ECBilt: a dynamic alternative to mixed
boundary conditions in ocean models. Tellus 50A, 348–367.

Opsteegh, J. D., Selten, F. M. & Haarsma, R. J. 2001 Climate variability on decadal timescales.
Technical Report 410 200 060, Dutch National Research Programme on Global Air Pollution
and Climate Change.

Palutikof, J. P., Brabson, B. B., Lister, D. H. & Adcock, S. T. 1999 A review of methods to
calculate extreme wind speeds. Meteorol. Appl. 6, 119–132.

Timmerman, H. 1977 Meteorological effects on tidal heights in the North Sea. ’s Gravenhage:
Staatsdrukkerij.
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