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ABSTRACT

Nearest-neighbor resampling is introduced as a means for homogenizing temperature records on a daily to sub-daily
level. Homogenization refers here to the problem of calculating daily mean and sub-daily temperatures from a time
series subject to irregular observation frequencies and changing observation schedules. The method resamples diurnal
temperature cycles from an observed hourly temperature subrecord at the station. Unlike other methods, the technique
maintains the variance in a natural way. This property is especially important for the analysis of trends and variability of
extremes. For a given day, the resampling technique does not generate a single-valued solution but this peculiarity is of
no effect in the applications considered here. The skills of the nearest-neighbor resampling technique, in terms of bias,
RMSE, and variability, are compared with those of four other methods: a sine-exponential model, a model that uses the
climatological mean daily cycle, a regression model for calculating daily values, and a deterministic version of the nearest-
neighbor technique. The series used in the tests is the 1951–2000 meteorological record of De Bilt (The Netherlands). The
emphasis in the comparisons is on the reconstruction of daily mean temperatures. The analysis shows important differences
in performance between the models. The regression-based method performs best with respect to the calculation of the
individual daily mean temperatures; the day-to-day variability is best reproduced with the nearest-neighbor resampling
technique. The performance of the models improves when cloudiness is used as an extra predictor. The improvement is,
however, small compared to the intermodel differences. The type of model that should be used depends on the desired
application. For trend and variability studies, the nearest-neighbor resampling technique performs best. Nearest-neighbor
resampling can successfully be performed even in situations where the length of the hourly subrecord is an order of
magnitude less than the length of the series to be homogenized. Copyright  2005 Royal Meteorological Society.
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1. INTRODUCTION

For the analysis of trends and variability of extreme weather events, datasets with a daily resolution or
better are needed. Nowadays these data sets become more and more available to the scientific community
(Peterson et al., 1997; Lavery et al., 1997, Vincent et al., 2000; Klein Tank et al., 2002). However, with the
introduction of daily data sets and the accompanying analysis of extremes (e.g. Klein Tank and Können,
2003), the differences between methods used for homogenizing meteorological time series become more
apparent.

In general, homogenization techniques focus on means of the climate variables. For the analysis of changes
in extreme weather events and variability, this is not sufficient. This type of analysis requires that other
characteristics than just the mean of the probability density functions be preserved. The development of
methods to achieve this is still in its infancy (Wijngaard et al., 2003). In this paper, we propose that
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nearest-neighbor resampling (see e.g. Young, 1994; Lall and Sharma, 1996) can be used to deal with
this problem. We apply the technique to the well-known problem of calculating daily mean and sub-daily
temperature values for temperature time series subject to irregular observation frequencies and changing
observation schedules. The technique has the potential to be applied to other homogenization problems as
well.

Nearest-neighbor resampling is a nonparametric statistical simulation or estimation technique. In the nearest-
neighbor resampling procedure, variables of interest are sampled (simultaneously) with replacement from the
observed data. In our case this refers to the temperatures belonging to the diurnal temperature cycle, which are
then taken from a day that is randomly chosen from a set of days with analogue properties and having hourly
observations. An interesting feature of the resampling technique is that no assumptions have to be made
about the underlying distributions of each of the variables and of the dependencies between those variables.
Especially in the hydrological literature, nearest-neighbor resampling has received much attention, mainly as
a technique for simulating time series of weather variables (Lall and Sharma, 1996; Brandsma and Buishand,
1998; Buishand and Brandsma, 2001; Harold et al., 2003).

Irregular observation frequencies and changing observation schedules at a station are an important cause
of inhomogeneities in daily temperature time series (e.g. Mitchell, 1958; Baker, 1975; Schaal and Dale,
1977; Karl et al., 1986). Daily mean temperatures (Tm), for instance, derived for a station that has been
subject to such changes, are often used for trend analysis. Before the analysis, the series are homogenized
by reducing the observation-hour averaged temperatures to Tm (often taken equal to the 24-h mean). The
effectiveness of the corrections for a particular day is, however, highly dependent on the sensitivity of the
daily temperature cycle to weather situations. Particularly on days with pronounced or extreme temperatures,
the diurnal cycle differs largely from its mean shape and amplitude. As a result, correction factors based
on regression or climatology underestimate the variance in the reconstructed Tm series. This problem can be
bypassed with the nearest-neighbor resampling technique, as, in contrast to other methods, the resampling
technique is able to preserve the variance in a natural way by resampling diurnal temperature cycles from
the observed temperature record. This property is especially important for trend and variability analysis of
extremes.

Because the resampling technique implies an insertion of sub-daily values originating from a day that is
chosen out of the set of nearest neighbors by a random selection procedure, it may lead to more than one
answer for each day and is therefore not single-valued. Hence, each resampling run may provide another
value. Although being multivalued is an uncommon property in the climate literature on homogenization, it
does not need to be a disadvantage. It has to be regarded in the context of the application. For instance in
trend analysis multivalued solutions for specified days have no effect on the result, while for the calculation
of a particular day, it obviously has. If the requirement is homogenization without loss of variance, nearest-
neighbor resampling may do the job. Apparently, the price to be paid is nonuniqueness of the individual
values.

To illustrate the benefits of statistical selection procedures in homogenization problems, we also present a
‘deterministic version’ of the nearest-neighbor technique. This version uses a weighted mean of the nearest
neighbors and is therefore not a resampling technique but rather a nearest-neighbor smoothing technique
(Härdle, 1990). We further denote the deterministic version as the nearest-neighbor averaging technique.

Nearest-neighbor resampling is compared with a sine-exponential model (referred as SinExp), with a model
that fixes the climatological daily cycle model (ClimDay), with a linear regression model (LinReg), and with
nearest-neighbor averaging. The skills of the various methods, in terms of bias, root mean squared errors
(RMSE), and variability, are tested using the hourly record of the Dutch meteorological station De Bilt
(1951–2000). The emphasis is on the reconstruction of daily mean temperatures, but the reproduction of
hourly and minimum and maximum temperatures is also considered. We also study the added value of using
cloudiness as an extra predictor in the statistical models.

In Section 2, we describe the data of De Bilt and we introduce the nearest-neighbor resampling technique,
nearest-neighbor averaging, and the three other models. Section 3 presents the results of the comparison of
the methods. Section 4 closes the paper with a discussion and conclusion.
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2. DATA AND METHODS

2.1. Data

For the analysis in this paper, the hourly temperature series 1951–2000 of De Bilt are used. De Bilt is
situated in the center of the Netherlands at (52°06′N, 05°11′E) with the ground surface 2 m above mean sea
level. The major observational changes that occurred during the 1951–2000 period are: (1) a relocation of the
thermometer screen on 27 August 1951 to a grass field 210 m southwards; (2) a lowering of the measurement
height on 29 June 1961 from 2.2 to 1.5 m; (3) a change of screen type on 5 August 1980 from a wooden to
a synthetic Stevenson screen (artificially ventilated); and (4) a change of screen type on 26 June 1993 to a
KNMI multiplated screen (naturally ventilated). There is a linear trend of 1.25 °C over the 1951–2000 period.
This is, however, of no effect to the mutual comparison of the models in this paper.

For the test of sensitivity of the methods to cloud cover, hourly and daily mean cloud information is needed.
In the hourly 1951–2000 De Bilt series, visually observed cloud cover on a scale between zero (clear) to
eight (overcast) is continuously available. For the nearest-neighbor methods, we used cloudiness directly on
the observation hours, while for ClimDay and LinReg we defined three cloud classes for the daily mean
cloudiness: few cloud (0–4, occurring in 28.6% of the data), medium cloud (5–6, 35.6% of the data), and
much cloud (7–8, 35.8% of the data). Daily mean cloudiness is calculated here as the 24-h mean cloudiness
rounded to the nearest integer.

2.2. Methods for calculating the diurnal cycle, Tm, Tmin and Tmax

In this section, we describe the five methods considered that can be used to estimate Tm from a few
observations per day (the average over 24 hourly observations is considered here to represent the ‘true’ daily
mean temperature Tm). The methods are nearest-neighbor resampling (k-NN1), nearest-neighbor averaging
(k-NN2), SinExp, ClimDay and LinReg. The nearest-neighbor techniques and SinExp stand out from the other
models in the sense that they also provide an internally consistent estimate of the full diurnal cycle, including
the values of Tmin and Tmax. LinReg can also be used to directly estimate Tm, as well as Tmin and Tmax, but
these estimates occur independently of each other. ClimDay cannot be expected to provide reasonable values
for sub-daily values or for Tmin and Tmax, particularly if the deviation of Tm from climatology is large. In
fact, owing to their construction, k-NN2 and SinExp may also a priori be expected to yield biased estimates
of Tmin and Tmax, but for these methods it is less obvious than for ClimDay.

2.2.1. k-nearest neighbor techniques (k-NN1 and k-NN2 ). The method of nearest-neighbor resampling (Lall
and Sharma, 1996; Rajagopalan and Lall, 1999) is used here to search for analog diurnal temperature cycles
in an observational record of hourly temperature observations. We denote the nearest-neighbor techniques by
k-NN, the k referring to the number of nearest neighbors on which the selection is based and NN referring to
nearest neighbors. We use two versions of the method. The first version (k-NN1), refers to nearest-neighbor
resampling, in which for each day, one of the k-NN is randomly selected according to some predefined
weight-function to construct a diurnal temperature cycle. The second version (k-NN2), referred here as the
nearest-neighbor averaging, calculates the diurnal cycle as a weighted average of all k-NN using the same
weight-function as in k-NN1. We now give a concise description of how the nearest neighbors are determined;
for more details of the method we refer to Brandsma and Buishand (1998) and Buishand and Brandsma (2001).

To find an analog diurnal temperature cycle for day t , a state vector Dt is formed consisting of q

characteristics for that day (e.g. temperature and cloudiness at certain times of day t or even day t − 1
or t + 1). Next, a distance δ between Dt of the day of interest and the state vector Du of the days in the
observed record (within a certain window centered on the calendar day of interest) has to be determined. The
Mahalanobis metric (e.g. Kendall et al., 1983, p. 290) is used here to determine this distance:

δ(Dt , Du) = ((Dt − Du)
T B−1(Dt − Du))

1/2 (1)

where B is the covariance matrix of Dt , i.e. the q × q matrix containing the covariances between the q

variables in Dt (B is calculated for each calendar day separately, yielding 365 matrices). A discrete probability
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distribution is then used for resampling one (k-NN1) or all (k-NN2) of the k-NN. Here we use the decreasing
kernel recommended by Lall and Sharma (1996) that gives higher weight to the closer neighbors. The
probability pj that the j th closest neighbor is resampled is then given by:

pj = 1/j

k∑
i=1

1/i

(2)

For instance, for k=20, the probability p1 that the closest NN is selected equals 1/( 1
1 + 1

2 + 1
3 + · · · + 1

20 )=
0.278 and the probability p20 that the farthest NN is selected equals 1

20/( 1
1 + 1

2 + 1
3 + · · · + 1

20 ) = 0.014. The
day itself is excluded here from the NN to make a more fair comparison between the method in the calibration
period possible.

To reduce the effect of seasonal variation of the variables, two provisions are made here. First, for all
variables x in the state vector D we calculated anomalies x∗ by subtracting an estimate md,h of the mean of
the variable for each calendar day d(d = 1, 2, . . . , 365) and hour h(h = 1, 2, . . . , 24); after the resampling
the x∗ is backtransformed into x. To reduce the effect of sampling variability, smooth approximations for
successive calendar days of md,h are used instead of the raw values. Smoothing was done with the so-called
supersmoother (Härdle, 1990; compare also Brandsma and Buishand, 1998). Second, the search for nearest
neighbors is restricted to days within a moving window of width w, centered on the calendar day of interest.
Accordingly, the covariance matrix B is calculated for each calendar day using the days in the window.
Although the method is nonparametric, values must be specified for k and the window width w.

2.2.2. Sine-exponential model (SinExp). SinExp is an analytical model of the diurnal cycle proposed by
Parton and Logan (1981). This model describes the diurnal cycle by a sine function during daytime connected
to a decreasing exponential function during nighttime. For a given day, it has three free parameters, Tmin and
Tmax on day t and Tmin on day t + 1 denoted as T ′

min. In an uninterrupted series of days, two free parameters
for each day remain because of double use of Tmin. The model assumes that Tmax occurs somewhere during
the daytime hours and Tmin occurs within a few hours before or after sunrise. The phase shift α between the
time of the maximum temperature hmax and midday is defined as α = hmax − 1

2 (hr + hs), where hr and hs are
the times of sunrise and sunset respectively. The phase shift β between the time of the minimum temperature
hmin and hr is defined by β = hmin − hr. Then, the SinExp model is give by:

T (h) =



Tmin + (Tmax − Tmin) sin
[
π(h − hr − β)
l + 2(α − β)

]
hmin ≤ h ≤ hs (3a)

τ + [T (hs) − τ ] exp
[
− γ (h − hs)

24 − l + β

]
hs ≤ h ≤ h′

min (3b)

where day length l is defined as l = hs − hr, γ is an exponential decay coefficient, and h′
min is the time of the

minimum temperature at day t + 1. All times are in hours. The variables hmin, h′
min, hmax are climatological

parameters, calculated per month, and hr and hs are astronomical quantities. The decay coefficient γ can also
be treated as a climatological parameter, but better results are obtained if γ is adjusted to the observations.
This approach, which we follow in the present paper, adds one more degree of freedom to the model, bringing
the total (for uninterrupted series) to three.

The parameter τ deserves special attention. In Parton and Logan’s (1981) paper, as well as in follow-up
papers (e.g. Van Engelen and Geurts, 1983; Wann et al., 1985), τ in Equation (3b) is taken as τ = T ′

min. This
substitution is, however, not correct, as the actual meaning of τ should be the asymptotic value of T of
the nighttime decay, hence Equation (3b) for h → ∞. Consequently, the erroneous insertion τ = T ′

min results
in physical inconsistencies, which manifest themselves, among other things, in a discontinuity in the diurnal
temperature cycle at the time of the minimum temperature. The correct value of τ follows from Equation (3b)
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and the condition of continuity of the daily temperature curve at h′
min:

τ =
T ′

min − T (hs) exp
[
−γ (h′

min − hs)

24 − l + β

]

1 − exp
[
−γ (h′

min − hs)

24 − l + β

] . (4)

So far, no extension of the SinExp model that described cloud-cover dependence of the diurnal cycle has
been formulated.

2.2.3. Climatological daily cycle model (ClimDay). ClimDay uses the mean climatological diurnal temper-
ature cycle, known from a period for which hourly temperature readings are available. This cycle can then be
used to take into account the observational hours in calculating Tm. Here we follow the approach suggested
by Moberg et al. (2002) and Bergström and Moberg (2002) using a slightly different notation:

Tm = 1

N

N∑
i=1

(Th(i) − �h(i)), N ≤ 24; h(i) ∈ [1, 2, . . . , 24] (5)

where N is the number of observation hours on a day, h(i) is the observation time of the ith observation, and
�h(i) denotes the deviation of the climatological temperature at time h(i) from the climatological Tm for the
calendar day to which the observation day belongs. Note that Equation (5) is equivalent to climatologically
correcting the arithmetic average of a restricted number of sub-daily observations to the arithmetic average
of an hourly set (see e.g. Können et al., 1998).

For the inclusion of cloud, we also follow the approach suggested by Moberg et al. (2002) and Bergström
and Moberg (2002):

Tm = 1

N

N∑
i=1

(
Th(i) − DTR(p)

DTR
�h(i)

)
, N ≤ 24; h(i) ∈ [1, 2, . . . , 24] (6)

where DTR and DTR(p) are the mean diurnal range T max − T min for all days and for days in cloud class
p, respectively. The calendar-day stratified values of �h(i), DTR(p), and DTR, are derived for a period for
which hourly measurements are available.

2.2.4. Linear regression model (LinReg). LinReg models may be used to calculate Tm, Tmin, or Tmax from
a restricted number of observations per day. The method used here is described as follows:

Tm = a0 +
N∑

i=1

aiTh(i) + ε, h ∈ [. . . , −1, 0, 1, 2, . . . , 24, 25, . . .] (7)

where the notation is the same as in Equation (5) and ε is an error term. Cloudiness may be included as a
predictor by making the coefficients ai cloud-deck dependent according to climatology. For the calculation
of Tmin or Tmax, Equation (7) is also used, by replacing Tm in Equation (7) with Tmin and Tmax, resulting in
estimates of Tmin and Tmax that are independent of each other and of Tm.

2.3. Model calibration and verification

Reconstructions of Tm, Tmin or Tmax from the 1951–2000 observations of De Bilt at 0800, 1400, and 2000
GMT (about 20 min difference with local solar time) are calculated with each of the five methods (with
exceptions of those cases for which a particular model cannot be used). Both reconstructed and observed
values of Tmin and Tmax are for each day taken to be the minimum and maximum, respectively, of the 24
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hourly temperatures. The reconstructed values are then compared with the observed values of Tm, Tmin, or
Tmax in the series. The 1971–2000 period is used for model calibration and the 1951–1970 period for model
verification.

For the k-NN techniques, values have to be specified for the moving window width w and the number
of nearest neighbors k used in the selection/averaging procedure. For w we used a value of 31 days, which
is considered small enough to minimize the effect of seasonal variation of the variables, but large enough
to permit a large sample population. Thus for the 1971–2000 observed record, the k-NN for a given day
are selected from 30 × 31 − 1 = 929 days. For k, a sensitivity calculation showed that adequate results, in
terms of annual mean RMSE of the hourly data, could be obtained for a rather broad range of values (about
5–50). It is known that the optimal value of k depends on the type of application (see e.g. Buishand and
Brandsma, 2001). In general, the optimal k will be smaller when the purpose is time series simulation than
when the purpose is prediction. Here we chose k = 20 for resampling from the 30-year observed record. Thus
the nearest-neighbor resampling technique (k-NN1) randomly selects one of the 20 nearest neighbors, with
the probability of a NN being selected specified by Equation (2), whereas the nearest-neighbor averaging
technique (k-NN2) calculates a weighted average of the 20 nearest neighbors according to the weights taken
from Equation (2). The NN techniques are applied to the anomalies T ∗ of the temperatures in the state
vector. The resulting simulated daily cycle for a given day is linearly adjusted to fit the known temperature
observations of the day in consideration. Then, jumps between days are removed by linearly adjusting between
the closest known observation before midnight and the closest known observation after midnight. After these
procedures, T ∗ is backtransformed into T . Figure 1 gives an illustration of the k-NN1 technique for 7–9 July
1971, using T8 and T20 values as variables in the state vector.

For the SinExp model, the hr, hs are inserted from astronomical formulas. Climatological values of the
parameters hmax, hmin, and an initial value of γ were determined for each month from the 1971–2000 hourly
data. Thereafter, the values of the parameters hmax and hmin were optimized for each month in terms of the
RMSE of the hourly temperatures. For each day t , the values of Tmin and Tmax are determined by solving
them from two versions of Equation (3a), in which the first one in the left-hand side of the observed value T8

of day t has been inserted and in the second one the observed value T14 (see also Van Engelen and Geurts,
1983). After this, τ for each day t can be found from Equation (4) using the value of T (hs) that follows
from the calculated values of Tmin and Tmax of day t with Equation (3a), and the minimum temperature T ′

min,
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Figure 1. Illustration of the homogenization and interpolation by the nearest-neighbor resampling technique (k-NN1) for 7–9 July 1971,
using T8 and T20 as variables in the state vector. Plot (a) gives the anomaly values T ∗ (with respect to climatology) of the three pairs
of variables (T8 and T20) in the state vector (crosses) and the three uncorrected resampled diurnal cycles (open squares). In plot (b),
the resampled diurnal cycles are linearly adjusted such that the T8 and T20 values equal those of the variables in the state vector and
such that jumps between successive days are removed. In plot (c), the resampled anomaly values (plot (b)) are backtransformed into

temperature and compared with the measured hourly values (filled triangles). Note the difference in vertical scales
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as calculated for day t + 1. With Tmin, Tmax, and τ of a given day known, and γ put on its climatological
value, an initial solution to the whole diurnal cycle (Equation (3)) of that day is fixed. The T20 value is then
used to adjust the diurnal cycle in its exponential part (Equation (3b)), which implies an adjustment of γ to
the observations of day t .

For the application of ClimDay, no specific climatological parameters had to be calculated. Smoothed daily
cycles are calculated for each calendar day from the observed hourly temperatures (1971–2000). The smooth
approximations for successive calendar days are obtained with the supersmoother (Härdle, 1990).

In the LinReg model, Equation (7) is fitted for each month separately using least-squares regression for Tm,
Tmin, and Tmax. The parameters, ai , are thus determined for each of the 12 calendar months. We also fitted the
model for a moving window, giving parameters for each of the 365 calendar days. However, the sensitivity
of RMSE to window size is found to be small.

3. RESULTS

In this section, we compare the five models with respect to their ability to accurately calculate hourly (k-
NN1, k-NN2 and SinExp) and daily (all models) temperatures from a few temperature readings per day. In
Section 3.1, we first compare the models for the calibration 1971–2000 and verification period 1951–1970
for the following three combinations of input values: (a) T20, (b) T8 and T20, (c) T8, T14 and T20, where the
index refers to GMT hour. Note that ClimDay and LinReg are not able to simulate complete hourly diurnal
temperature cycles that are internally consistent. As a result, ClimDay is only used to provide estimates of
Tm, while LinReg only provides independent estimates of Tm, Tmin, and Tmax. Note further that SinExp can
only run on choice (c). As a consequence of these limitations, some of the cells in our tables are empty.

In Section 3.2, we compare the skill of the models when cloudiness is used as an extra predictor variable.
Here SinExp is excluded, as no cloud-dependent version exists. In Section 3.3, we compare the models
(without the addition of cloudiness) with respect to their ability to simulate extreme daily mean temperatures.

To compare the output of the models with the observed values, we calculated the bias (BIAS) and RMSE
per month and averaged these values to obtain annual mean values. In addition, we considered a measure for
the hour-to-hour variability (HHVAR) and day-to-day variability (DDVAR) defined as:

HHVAR = 1

N

N∑
h=1

|Th − Th−1| (8)

DDVAR = 1

M

M∑
t=1

|Tx,t − Tx,t−1| (9)

where h is the index for hour number and N is the total number of hours in the time series of hourly T values,
t is the index for day number, and M is the total number of days in the daily time series. Tx in Equation (9)
may refer to Tm, Tmin, or Tmax. In Tables I–VI, the differences between �HHVAR and �DDVAR with respect to
climatology are averaged per month and presented as percentage differences (reconstructed minus observed,
relative to the observed).

3.1. Comparison of the five models for the calibration and verification period

The results for the five models for the three defined sets of input variables: (a) T20, (b) T8 and T20, and
(c) T8, T14, and T20 are presented in Tables I–III. It should be emphasized that the results for k-NN1, here
and in the rest of the paper, refer to one (randomly selected) realization only. Although other realizations
may give other values for individual days, the influence on the statistics in the tables is negligible. We note
that this feature naturally follows from the definition of the method. In Sections 3.1.1 and 3.1.2, we discuss
the results for the calibration period and those for the verification period respectively.
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Table I. Comparison of models with T20 as input for the calibration period 1971–2000 and the verification period
1951–1970 using the hourly temperature data of the De Bilt. The k-NN1 and k-NN2 stand for the k nearest-neighbor
technique with, respectively, randomly sampling one of the k-nearest neighbors (nearest-neighbor resampling) and
weighted averaging of all k-nearest neighbors (nearest-neighbor averaging); ClimDay stands for the climatological daily
cycle model and LinReg stands for the multiple linear regression model. Th, Tm, Tmin, and Tmax represent the hourly
temperatures, daily mean, minimum, and maximum temperatures, respectively. Results are presented for the bias (BIAS),
root mean squared errors (RMSE), hour-to-hour variability (�HHVAR), and day-to-day variability (�DDVAR), the latter two
expressed as a percentage difference with respect to the observed record. The number of nearest neighbors k is chosen

to be 20 and the window width equals 31 days

Model Th,(h=1,...,24) Tm Tmin Tmax

BIAS
(°C)

RMSE
(°C)

�HHVAR

(%)
BIAS
(°C)

RMSE
(°C)

�DDVAR

(%)
BIAS
(°C)

RMSE
(°C)

�DDVAR

(%)
BIAS
(°C)

RMSE
(°C)

�DDVAR

(%)

Calibration 1971–2000
k-NN1 0.002 2.122 –0.7 0.002 1.136 4.8 0.069 2.088 −2.5 −0.005 2.337 18.2
k-NN2 0.001 1.607 −26.7 0.001 0.846 −10.5 0.617 1.804 −25.2 −0.515 1.796 −19.4
ClimDay – – – 0.000 1.340 40.1 – – – – – –
LinReg – – – 0.000 0.812 −11.8 0.000 1.718 −31.9 0.000 1.666 −28.9

Verification 1951–1970
k-NN1 0.119 2.262 0.6 0.119 1.222 8.2 0.114 2.310 −3.2 0.066 2.415 22.0
k-NN2 0.109 1.695 −25.6 0.109 0.893 −9.3 0.749 1.960 −29.5 −0.466 1.859 −17.5
ClimDay – – – 0.109 1.354 37.7 – – – – – –
LinReg – – – 0.117 0.843 −11.8 0.136 1.813 −31.1 0.020 1.723 −28.8

Table II. As in Table I but now with T8 and T20 as input

Model Th,(h=1,...,24) Tm Tmin Tmax

BIAS
(°C)

RMSE
(°C)

�HHVAR

(%)
BIAS
(°C)

RMSE
(°C)

�DDVAR

(%)
BIAS
(°C)

RMSE
(°C)

�DDVAR

(%)
BIAS
(°C)

RMSE
(°C)

�DDVAR

(%)

Calibration 1971–2000
k-NN1 −0.011 1.698 −1.8 −0.011 0.696 3.8 0.075 1.783 0.2 −0.077 2.003 16.5
k-NN2 −0.009 1.304 −25.2 −0.009 0.528 −2.6 0.499 1.508 −18.3 −0.508 1.605 −11.0
ClimDay – – – −0.002 0.621 10.8 – – – – – –
LinReg – – – 0.000 0.518 −4.1 0.000 1.574 −28.3 0.000 1.542 −20.2

Verification 1951–1970
k-NN1 −0.033 1.816 −0.9 −0.033 0.755 3.9 0.076 1.887 −1.5 −0.164 2.196 18.8
k-NN2 −0.033 1.390 −24.5 −0.033 0.574 −2.5 0.498 1.563 −20.9 −0.619 1.771 −9.8
ClimDay – – – −0.035 0.652 9.3 – – – – – –
LinReg – – – 0.001 0.557 −4.1 0.100 1.641 −27.6 −0.132 1.658 −20.2

3.1.1. Calibration period (1971–2000). As expected, the output statistics for all models improve when
we increase the number of predictors. Consider, e.g. the statistics of the hourly temperatures in the
first three columns of Tables I–III. For each addition of an observation hour, there is a reduction
in RMSE for both the k-NN1 and k-NN2 methods. RMSE decreases about linearly with the number
of observation hours. For the daily data (Tm, Tmin, Tmax) the reduction in RMSE is largest for Tmax

when T14 is added as a predictor. The obvious reason is that T14 is generally close to the maximum
temperature.

For the reproduction of hourly temperatures, k-NN2 performs better than k-NN1 and SinExp (only in
Table III) in terms of RMSE. BIAS of all three models is close to zero (<0.04 °C). The k-NN1 model
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Table III. As in Table I but now with T8, T14, and T20 as input. The table includes the results of the sine–exponential
model (SinExp), which needs three sub-daily temperature values as input

Model Th,(h=1,...,24) Tm Tmin Tmax

BIAS
(°C)

RMSE
(°C)

�HHVAR

(%)
BIAS
(°C)

RMSE
(°C)

�DDVAR

(%)
BIAS
(°C)

RMSE
(°C)

�DDVAR

(%)
BIAS
(°C)

RMSE
(°C)

�DDVAR

(%)

Calibration 1971–2000
k-NN1 0.002 1.257 −1.7 0.002 0.495 0.5 0.089 1.658 −0.8 −0.028 0.771 2.3
k-NN2 0.000 0.972 −22.7 0.000 0.386 −2.2 0.476 1.403 −16.5 −0.348 0.701 1.1
SinExp −0.036 1.168 −30.5 −0.036 0.457 4.1 0.097 1.648 3.3 −0.418 0.778 2.9
ClimDay – – – 0.000 0.593 12.3 – – – – – –
LinReg – – – 0.000 0.381 −4.0 0.000 1.495 −23.0 0.000 0.760 −5.2

Verification 1951–1970
k-NN1 −0.008 1.333 1.4 −0.008 0.522 0.3 0.011 1.798 −1.1 −0.036 0.798 2.2
k-NN2 −0.006 1.026 −19.9 −0.006 0.403 −2.9 0.420 1.452 −18.8 −0.355 0.731 1.7
SinExp −0.062 1.216 −24.3 −0.062 0.479 4.1 −0.077 1.686 3.5 −0.430 0.795 2.9
ClimDay – – – 0.006 0.577 10.6 – – – – – –
LinReg – – – 0.021 0.400 −4.0 0.061 1.564 −22.4 −0.040 0.804 −5.2

Table IV. As in Table I but with cloudiness added as predictor/state variable

Model Th,(h=1,...,24) Tm Tmin Tmax

BIAS
(°C)

RMSE
(°C)

�HHVAR

(%)
BIAS
(°C)

RMSE
(°C)

�DDVAR

(%)
BIAS
(°C)

RMSE
(°C)

�DDVAR

(%)
BIAS
(°C)

RMSE
(°C)

�DDVAR

(%)

Calibration 1971–2000
k-NN1 −0.009 1.999 −2.2 −0.009 1.107 4.4 0.073 2.001 −0.2 −0.079 2.056 10.0
k-NN2 −0.007 1.491 −27.2 −0.007 0.822 −9.4 0.602 1.673 −20.8 −0.549 1.607 −18.5
ClimDay – – – −0.001 1.336 39.4 – – – – – –
LinReg – – – 0.000 0.796 −11.6 0.000 1.496 −19.4 0.000 1.393 −20.0

Verification 1951–1970
k-NN1 0.107 2.051 −1.3 0.107 1.133 3.4 0.207 2.078 −5.6 −0.012 2.122 12.2
k-NN2 0.104 1.558 −26.6 0.104 0.861 −10.7 0.742 1.804 −27.3 −0.502 1.652 −18.2
ClimDay – – – 0.110 1.350 36.5 – – – – – –
LinReg – – – 0.119 0.841 −11.6 0.114 1.580 −19.0 0.038 1.478 −19.9

is clearly superior in reproducing �HHVAR. This is because this model resamples complete diurnal cycles
without averaging. Figure 2 presents the monthly values of the output statistics for the hourly temperatures of
k-NN1, k-NN2, and SinExp for the calibration period in Table III (input: T8, T14 and T20). The figure shows
large differences between the three methods. Note for instance, the annual cycle in BIAS for SinExp, which
is absent for the k-NN methods.

The results for Tm show that LinReg always has the lowest RMSE, closely followed by k-NN2. The RMSE
of ClimDay is largest, which is probably because this method does not maximize the regression coefficient as
in LinReg. The fact that ClimDay does not use information of the previous or next day may also play a role.
�DDVAR of k-NN1 is closest to zero. BIAS is close to zero for all models (<0.01 °C). Figure 3 presents the
monthly values of the output statistics of Tm for all five models for the calibration period in Table III (input:
T8, T14, and T20). It illustrates, among other things, that k-NN1 performs best with respect to reproducing the
annual cycle of DDVAR (ranging between 1.9 °C in January and 1.3 °C in September) and that k-NN2 and
LinReg have about the same annual cycle for the RMSE. The shape of the annual cycle in the RMSE (large
values in summer and small values in winter) is a result of the diurnal temperature range, which is small in
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Table V. As in Table II but with cloudiness added as predictor/state variable

Model Th,(h=1,...,24) Tm Tmin Tmax

BIAS
(°C)

RMSE
(°C)

�HHVAR

(%)
BIAS
(°C)

RMSE
(°C)

�DDVAR

(%)
BIAS
(°C)

RMSE
(°C)

�DDVAR

(%)
BIAS
(°C)

RMSE
(°C)

�DDVAR

(%)

Calibration 1971–2000
k-NN1 −0.013 1.520 −3.6 −0.013 0.651 2.0 0.126 1.562 0.0 −0.136 1.770 9.7
k-NN2 −0.025 1.147 −26.5 −0.025 0.489 −3.0 0.489 1.334 −13.7 −0.580 1.428 −11.8
ClimDay – – – −0.002 0.592 9.1 – – – – – –
LinReg – – – 0.000 0.481 −4.6 0.000 1.366 −15.6 0.000 1.248 −14.3

Verification 1951–1970
k-NN1 −0.038 1.594 −3.0 −0.038 0.708 3.1 0.099 1.636 −2.5 −0.219 1.915 13.4
k-NN2 −0.045 1.210 −25.5 −0.045 0.529 −2.6 0.463 1.365 −15.0 −0.667 1.548 −10.5
ClimDay – – – −0.034 0.617 7.6 – – – – – –
LinReg – – – −0.004 0.514 −4.6 0.044 1.425 −15.3 −0.105 1.367 −14.2

Table VI. As in Table III but with cloudiness added as predictor/state variable

Model Th,(h=1,...,24) Tm Tmin Tmax

BIAS
(°C)

RMSE
(°C)

�HHVAR

(%)
BIAS
(°C)

RMSE
(°C)

�DDVAR

(%)
BIAS
(°C)

RMSE
(°C)

�DDVAR

(%)
BIAS
(°C)

RMSE
(°C)

�DDVAR

(%)

Calibration 1971–2000
k-NN1 0.015 1.211 −3.1 0.015 0.479 1.0 0.139 1.575 0.3 −0.047 0.763 1.0
k-NN2 0.017 0.925 −23.5 0.017 0.368 −1.3 0.517 1.337 −14.4 −0.352 0.694 0.6
ClimDay – – – 0.002 0.522 12.1 – – – – – –
LinReg – – – 0.000 0.356 −2.8 0.000 1.358 −15.6 0.000 0.718 −5.6

Verification 1951–1970
k-NN1 0.014 1.255 −0.7 0.014 0.492 0.4 0.085 1.660 −0.7 −0.051 0.798 2.0
k-NN2 0.014 0.967 −21.0 0.014 0.386 −2.2 0.469 1.365 −15.3 −0.361 0.721 1.2
ClimDay – – – 0.003 0.512 10.6 – – – – – –
LinReg – – – 0.014 0.375 −2.8 0.033 1.420 −15.2 −0.046 0.777 −5.6

Table VII. BIAS in the annual number of days with daily mean temperatures Tm < 5th percentile (left) and Tm > 95th
percentile (right) for all five models for the 1951–2000 period for three combinations of input variables (a) T20; (b) T8,

T20; and (c) T8, T14, T20. The values in brackets give the corresponding standard errors

BIAS (annual number of days Tm < 5th percentile) BIAS (annual number of days Tm > 95th percentile)

T20 T8, T20 T8, T14, T20 T20 T8, T20 T8, T14, T20

k-NN1 −0.68 (0.52) −0.50 (0.49) 0.04 (0.37) 0.88 (0.47) −0.20 (0.37) −0.48 (0.35)
k-NN2 −3.00 (0.42) −1.52 (0.36) −0.72 (0.36) −1.22 (0.40) −1.30 (0.35) −0.68 (0.30)
SinExp – – 0.02 (0.40) – – −1.00 (0.29)
ClimDay 6.38 (0.55) 0.22 (0.43) 3.20 (0.42) 7.12 (0.56) 0.12 (0.39) 2.28 (0.42)
LinReg −3.04 (0.47) −1.56 (0.38) −2.14 (0.38) −1.56 (0.46) −1.82 (0.33) −1.06 (0.30)

winter and large in summer. A favorable feature of k-NN1 is that the dependence of �DDVAR on the number
of predictors is weakest among the presented methods.

For Tmin and Tmax, there is a large difference between the results. With respect to the BIAS, the k-NN1

performs better than the other models (the BIAS of LinReg is zero by definition), while for the RMSE, both
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Figure 2. Comparison of monthly output statistics for the hourly data produced by the three models that yield complete diurnal
temperature cycles using T8, T14, and T20 as input for the 1971–2000 calibration period. See the caption of Table I for an explanation

of the abbreviations

J F M A M J J A S O N D
-0.15

-0.10

-0.05

0.00

0.05

0.10

B
IA

S
 (

°C
)

k-NN(v1)
k-NN(v2)
SinExp
ClimDay
LinReg

J F M A M J J A S O N D
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
M

S
E

 (
°C

)

k-NN1
k-NN2
SinExp
ClimDay
LinReg

J F M A M J J A S O N D
-10

0

10

20

30
∆ D

D
V

A
R
 (

%
)

k-NN1
k-NN2
SinExp
ClimDay
LinReg

Figure 3. Comparison of monthly output statistics for the daily mean temperature data calculated by all five models using T8, T14, and
T20 as input for the 1971–2000 calibration period. See the caption of Table I for an explanation of the abbreviations

k-NN2 and LinReg perform well. The k-NN1 method is most suitable to reproduce the DDVAR, especially
for Tmin. It is somewhat surprising that �DDVAR for k-NN1 has values as large as 18.2% (Tmax in Table I) and
16.5% (Tmax in Table II) for the T20 and T8, T20 sets of input variables. Again, the variation of �DDVAR with
the number of predictors is smallest for k-NN1.

3.1.2. Verification period (1951–1970). Besides results for the calibration period, Tables I–III also contain
results for the verification period (1951–1970). Large differences between the statistics for the calibration
and verification period would indicate that models are over-fitted. For all cases, the differences between the
statistics for the two periods are sufficiently small.

3.1.3. Conclusions of the comparisons. Summarizing, for the reproduction of hourly data (k-NN1, k-NN2

and SinExp), k-NN2 is preferred when the objective is to obtain a good estimation of the individual hourly
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temperatures, whereas k-NN1 is preferred when it is important that the variance of the hourly temperatures is
maintained. For the daily data (all models), a similar conclusion can be drawn: the best choice for estimating
individual values is k-NN2 followed by LinReg; k-NN1 is the best if variance should be maintained. SinExp
and ClimDay, being the models that lean most heavily on climatology, perform less on both aspects.

3.2. Cloudiness as an extra predictor variable

The k-NN, ClimDay, and LinReg models allow for incorporating the effect of including, besides
temperature, cloudiness as predictor. The results for both the calibration and verification period are presented
in the following text.

3.2.1. Calibration period (1971–2000). As in Section 3.1, Tables IV–VI present the results for the input
variables: (a) T20, (b) T8 and T20, (c) T8, T14, and T20, but now with the addition of cloud. The most distinct
feature in comparison with Tables I–III is that RMSE is always lower when cloud is included (for LinReg
with least-squares estimation this is automatically true), ranging from a few percent lower to about 20% lower
(compare RMSE of LinReg for Tmax in Tables V and II). The inclusion of cloud also has a positive effect on
the reproduction of HHVAR and DDVAR but this is less clear than for the reduction in RMSE. The largest
improvement is found for the DDVAR of Tmax for k-NN1 and LinReg in Tables IV and V, ranging between
5.9 and 8.9%. The difference between the calculations with and without clouds are, however, much smaller
than the mutual differences between the models. There is a tendency that BIAS becomes somewhat larger
when cloudiness is included, but overall, the effect is marginal.

For the two versions of the k-NN model, we also studied the inclusion of wind direction and speed and
relative humidity at the observation hours (not shown). Although RMSE, �HHVAR and �DDVAR further reduce,
the reduction is small even when compared to the reduction introduced by the inclusion of cloudiness alone.
Furthermore, the inclusion of more variables causes BIAS to become slightly larger.

3.2.2. Verification period (1951–1970). As in Tables I–III, the differences between the statistics for the
calibration and verification period in Tables IV–VI are small. In contrast to the situation without cloud, the
differences for the BIAS and RMSE of Tmax for LinReg in Table VI are also small.

3.2.3. Conclusions of the comparisons. In conclusion, the inclusion of clouds as predictor in the models
improves the fit of the models in terms of RMSE, HHVAR, and DDVAR. However, in general, this
improvement is marginal and small compared to mutual differences between the models.

3.3. Calculation of extreme daily mean temperatures

An important test of the models is their ability to calculate extreme temperatures. Here we calculated
the annual number of days with daily mean temperatures Tm < 5th percentile and Tm > 95th percentile and
compared them with the observed values. The percentile values were calculated for each calendar day for
the 1971–2000 period and thereafter were smoothed with the supersmoother. Table VII presents the BIAS
in the annual number of extreme temperatures for the 1951–2000 period. The table shows that the BIAS
for k-NN1 is small and differs not more than two times the standard error from zero. For all other models,
the BIAS is mostly larger than for k-NN1 and is generally significantly different from zero. In all cases, the
BIAS for k-NN2 is smaller than that for LinReg. ClimDay shows the strongest variation of the BIAS with the
number of predictors, with a BIAS close to zero for the (T8, T20) input variables. Note that SinExp performs
surprisingly well for Tm < 5th percentile.

In conclusion, k-NN1 performs well in reproducing the 5th or 95th percentiles of Tm, and its results vary only
slightly with the number of predictors. This implies that k-NN1 is best capable of removing inhomogeneities
in these percentiles introduced by changing observation schedules and/or irregular observation frequencies.
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4. DISCUSSION AND CONCLUSIONS

We introduced nearest-neighbor resampling as a new technique for homogenizing temperature records on a
daily to sub-daily level. We compared the technique with other methods for the problem of calculating daily
and sub-daily temperature values from temperature time series subject to irregular observation frequencies and
changing observation schedules. A striking feature of the nearest-neighbor resampling technique (k-NN1) is
that it provides nonunique solutions, which is uncommon in the literature on homogenization of temperature
time series. Because the method resamples complete diurnal temperature cycles, the variance is preserved in
a natural way, which is important in the analysis of trends and variability of extremes. Another advantage of
k-NN1 is its low BIAS for Tmin and Tmax. The merits of k-NN1 in homogenizing series with preservation of
variance is apparent from the small bias, regardless of the number of predictors, in the 5th and 95th percentiles
of the daily temperatures, which demonstrates its power in trend analysis of extremes.

Because of its nondeterministic nature, the k-NN1 method is not suitable for all problems, e.g. when
the interest is in the exact dates of temperature records. In that case, k-NN1 will not be able to provide
single-valued dates because the results depend on the random seed used. The nearest-neighbor averaging
technique (k-NN2) or the LinReg model are then more appropriate. Note that for most test statistics, SinExp
and ClimDay produce results inferior to k-NN1, k-NN2 and LinReg. In this context, it should be underlined
that the k-NN techniques do not rely on the presence of a climatological diurnal cycle; on the contrary, they
should work equally well in reproducing Tm for records with no such cycle, e.g. for midwinter polar stations.

We have tested the nearest-neighbor techniques to the temperature of De Bilt in the Netherlands in the
current paper. There are no reasons to expect that the technique works less successfully for other stations. Like
other homogenization or interpolation methods, the nearest-neighbor technique relies on the assumption that
the shape of the diurnal temperature cycle does not change significantly between the calibration period and
the period of interest. The importance of this assumption increases with the decreasing number of temperature
observations per day.

The main advantage of the nearest-neighbor resampling compared to other methods is that the technique
maintains the variance in a natural way. Other techniques are proposed to artificially ‘inflate’ the variance
(Von Storch, 1999; Huth, 2002). We checked one approach for the LinReg model, in which we ‘inflated’ the
variance by means of adding randomized daily errors for each month separately. Although �DDVAR becomes
smaller, it is still larger than �DDVAR of k-NN1. However, RMSE increases and becomes larger than that of
k-NN1. Improvement may be obtained by using more sophisticated procedures for the addition of errors. If the
sophistication is pushed to a high level, the LinReg starts to resemble the k-NN1 so much that its benefits with
respect to the latter become unclear. And even then, an important drawback of the LinReg model remains,
namely, that Tmin and Tmax are independently estimated from each other and from Tm, whereas the estimates
of k-NN1 (but also k-NN2) are internally consistent.

An obvious limitation of the nearest-neighbor resampling technique (which it shares with other methods)
is that it requires that a subperiod of hourly observations is available in the record. The required length
of this high-frequency observational record is, however, shorter than intuitively thought. In addition to the
1971–2000 sampling period, we experimented with various other sampling periods with lengths of 10, 5,
and 2 years (1971–1980, 1981–1990, 1991–2000, 1971–1975 and 1971–1972). We compared the statistics
for the verification period with those in Tables I–III and found that the results only slowly deteriorate with
decreasing length of the sampling period. Even the 2-year sampling period seems to be of sufficient length
to reproduce the 20-year Tm record without any perceptual loss in skill. A related phenomenon can be
observed in applications of nearest-neighbor resampling for simulation of daily rainfall, where 1000-year
series with realistic extreme-value properties can successfully be generated from observational series of only
30-year length (see, e.g. Brandsma and Buishand, 1998; Buishand and Brandsma, 2001). This result has
important consequences. First, it widens the potentials of the method significantly; second, it provides an
important argument to augment existing long once-, twice-, or thrice-daily observational records with an
hourly extension of a couple of years on the same spot. We stress that, because of the construction of the
method and its application to anomalies, a series of a nearby station of hourly observations may also be suited
to do the job.
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We anticipate that nearest-neighbor resampling can be applied successfully to other homogenization
problems and elements other than temperature as well. Consider e.g. a situation where there is a break
in a time series due to station relocation. In that case, weather-dependent corrections may be resampled from
an overlapping interval or, if that does not exist, from an overlap with a nearby third station. Thereafter, these
corrections can be added to the series forwards or backwards. Another application, e.g. in data preprocessing
for trend studies of spatial patterns of extremes of daily temperature percentiles (see, e.g. Klein Tank et al.,
2005), is the estimation of daily means from daily minimum and maximum temperatures. If for part of the
stations the daily temperatures are not directly available but have to be estimated from the daily minimum and
maximum temperatures instead, nearest-neighbor resampling may be invoked to obtain homogeneity between
the various stations’ series.

An advantage of nearest-neighbor resampling to some other techniques is that extra weather variables can
easily be included in the state vector. Although the added value of the inclusion of extra weather variables
was not obvious for the examples presented in this paper, it may be different for other applications.

In conclusion, in this paper we have showed that nearest-neighbor resampling may be a promising alternative
to existing homogenization methods, especially where the interest is changes in extreme weather events
and subannual properties. The method has the capability of deriving weather-dependent corrections and the
potential to be applied to a wide range of problems.
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