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[1] A general expression for the statistical distribution of
the probability of the highest event occurring in a record is
presented. This result can be empirically applied to
situations where records are available for multiple
geographical locations. The empirical estimation of the
probability of the highest events provides a means to assess
whether the assumed (extreme value) distribution is
appropriate for extrapolation or not. The approach allows
for combining the highest events from different records and
to validate estimated return periods in the order of the length
of the combined records. The method is illustrated with an
analysis of the annual extreme wind speeds over the North
Atlantic area according to the ERA40 dataset, showing that
the Gumbel distribution is in favor of the GEV distribution
to estimate the (appropriately transformed) extreme wind
speeds up to return periods of 104 years. Citation: van den

Brink, H. W., and G. P. Können (2008), The statistical distribution

of meteorological outliers, Geophys. Res. Lett., 35, L23702,

doi:10.1029/2008GL035967.

1. Introduction

[2] In the perspective of safety protection, much scien-
tific attention is given to the estimation of hydrological and
climatological extreme events [Brabson and Palutikof,
2000; van den Brink et al., 2004b].
[3] From a theoretical point of view, several distributions

are possible [e.g., Coles, 2001]. However, although these
distributions often fulfill the standard goodness of fit
criteria, they may differ considerably in their estimates for
large return periods. This makes it hard to verify which
distribution correctly describes the extremes for return
periods exceeding the length of the observational record.
[4] A frequent situation is that multiple time series of a

certain meteorological variable are available (e.g., for dif-
ferent stations) for which one can assume the same distri-
bution, albeit with different parameters. A common
approach is then to combine the (normalized) data of
multiple stations [e.g., Buishand, 1991; Hosking and Wallis,
1997], but this requires spatial homogeneity over the whole
area.
[5] Here we present a robust diagnostic tool able to detect

whether the most extreme events of multiple records are
well described by the fitted distributions or not. The tool
detects how strongly the highest extremes in records (the
‘‘outliers’’) are over- or underestimated. The only condi-
tions to get the detection tool to work are that enough

records are available, and that the most extreme events of
different records are distinct.

2. Methodology

[6] We consider the probability integral transform theo-
rem [Folland and Anderson, 2002]:

Pr F yð Þ � xð Þ ¼ x 0 � x � 1 ð1Þ

with F the cumulative distribution function of a (meteor-
ological) variable y, from which follows:

Pr F yð Þ � G xð Þð Þ ¼ G xð Þ 0 � G xð Þ � 1 ð2Þ

Pr G�1 F yð Þð Þ � x
� �

¼ G xð Þ ð3Þ

Equation (1) states that F(y) is uniformly distributed
between 0 and 1 for every cumulative function F, whereas
equation (3) states that the inverse function of G applied to
F(y) is distributed according to G.
[7] Let yn be the maximum of n independent observations

y1 � y2� . . . � yn from distribution F(y), then the distri-
bution of yn is given by:

F ynð Þ ¼ Pr yn � yð Þ ¼ Pr y1 � yð Þ � � �Pr yn � yð Þ
¼ Fn yð Þ ð4Þ

Using that G�1 is monotonically increasing, it follows:

Pr G�1 F ynð Þð Þ � x
� �

¼ Pr G�1 F yð Þð Þ � x
� �� �n¼ G xð Þ½ �n ð5Þ

We now choose G(x) to be a distribution that satisfies the
max-stable property [e.g., de Haan and Ferreira, 2006, p. 9]:

G xð Þ½ �n¼ G anxþ bnð Þ: ð6Þ

with an and bn appropriate normalizing constants, and select
the simplest among them, which is the normalized Gumbel
distribution:

G xð Þ ¼ e�e�x

: ð7Þ

With this choice, equation (6) reduces to:

G xð Þ½ �n¼ G x� ln nð Þð Þ: ð8Þ

Incorporation in equation (5) gives:

Pr � ln � ln F ynð Þð Þ � xð Þ ¼ G x� ln nð Þð Þð ð9Þ
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If we define DXn as:

DXn ¼ � ln � ln F ynð Þð Þð Þ � ln nð Þ ð10Þ

then we have for the distribution of DXn:

Pr DXn � xð Þ ¼ G xð Þ ð11Þ

[8] Note that equation (11) does neither depend on the
underlying distribution F nor on the parameters of F, nor
on the sample size n. This implies that the distribution of
DXn can be constructed by combining (different or equal)
meteorological variables from different or equal parent
distributions, with correlated or uncorrelated parameters.
[9] Equation (11) can be visualized on a so-called Gumbel

plot, where the abscissa is transformed into the Gumbel
variate:

xr ¼ � ln � ln F̂ yrð Þ
� �� �

¼ � ln � ln
r

nþ 1

� �� �
ð12Þ

where F̂(yr) is the expected value of F(yr) [Benard and
Bos-Levenbach, 1953]. From equation (12) follows for r = n:

xn ¼ � ln � ln
n

nþ 1

� �� �
’ ln nð Þ ð13Þ

The approximation is useful for the graphical illustration of
the concept, as the highest event yn is plotted at a plotting
position xn ’ ln(n). Hence the horizontal ‘distance’ DXn

between xn and the distribution (with abscissa
�ln(�ln(F(yn)))) is Gumbel distributed with location para-
meter 0 and scale parameter 1. The concept is schematically
illustrated in Figure 1.
[10] If m records with independent outliers are used of

(not necessarily equal) lengths Ti, 1 � i � m, the distribu-
tion of the outliers can be tested up to a maximum return
period Tmax:

Tmax ’
Xm
i¼1

Ti ð14Þ

which implies that Tmax can be orders larger than the
individual record lengths.

3. Verification

[11] We applied equation (11) to 104 computer-generated
independent records of random length, from a randomly
chosen distribution (Gumbel, Weibull, Gaussian or GEV)
with randomly chosen parameters. The result is shown in
Figure 2, in which DX̂ n is the estimated value of DXn. It
shows an excellent agreement with theory, independent of
the choice of the distribution, parameters or record length.
Note that Figure 2 clearly shows that the transformation
according to equation (11) fully determines the distribution
of DXn, with no degrees of freedoms left.
[12] Equation (11) holds for an exactly known distribu-

tion F. However, in practical applications, an a priori type
of distribution is assumed, and then the parameters are to be
estimated from the data. This means that F is replaced by
~Fq̂, where

~F stands for the assumed distribution, and q̂ for
the vector of the parameters fitted to the data (using
Maximum Likelihood estimates).

[13] A common choice for F to describe meteorological
annual maxima is the Generalized Extreme Value (GEV)
distribution [Jenkinson, 1955]:

F yð Þ ¼ e�e�x ð15Þ

with the Gumbel variate x a substitute for:

x ¼
ln 1� x y�m

a

� ��1=x x 6¼ 0
y� m
a

x ¼ 0

8<
: ð16Þ

in which m is the location parameter, a the scale parameter,
x the shape parameter, and y the annual maxima of the
considered variable. The Gumbel distribution is the special
case with x = 0.
[14] A well-known problem with goodness of fit tests is

the influence of finite n and of the unknown parameters on
the test criteria [Laio, 2004]. In our case, both the sampling
effect and the effect of yn on q̂ result in a standard deviation
of DX̂ n that is too small. The effect of the sample length n
on the distribution of DX̂ n is illustrated in Figure 3 for
several values of n. Shown is the case that the original
distribution F is a Gumbel distribution and the fitted
distribution ~F is either a Gumbel- or a GEV-distribution.
It shows that if the fitted distribution ~F is a Gumbel
distribution, the distribution of DX̂ n is near the theoretical
line if the record lengths n � 40.
[15] However, the presence of an extra parameter (x) in

the GEV distribution leads to a severe underestimation of
the larger values of DXn even if the record length n = 300.
So, although the extra parameter of the GEV distribution
may better fit to the observations than the Gumbel distri-
bution, this improvement holds only for return periods
within the record length–for return periods exceeding the
record length the results of the GEV fit are worse. This
makes the GEV distribution inappropriate for estimates of
return periods that exceed the record length. The same
conclusion can be drawn from situations in which the parent
distribution F is a GEV distribution, or that L-moments
estimates [Hosking et al., 1985] are used [Landwehr et al.,
1979; Kochanek et al., 2008] (see auxiliary material).1

[16] A possible solution may be to make assumptions
about the shape parameter, e.g., to be constant over a certain
area [Buishand, 1991].
[17] A single extreme meteorological event may deter-

mine the value of yn (and thus of DX̂ n) for multiple records.
To remove this spatial and temporal correlation, only those
values of DX̂ n should be considered that belong to distinct
meteorological events. For a given extreme event, that
record should be considered for which the event is most
exceptional, i.e., for which DX̂ n is maximal. Note that this
condition is much weaker than those required for Regional
Frequency Analysis [e.g., Reed et al., 1999].

4. Interpretation of the Empirical DX̂n

Distribution

[18] The following situations may occur:
[19] 1. If all m (temporally independent) points in a DX̂ n-

plot follow the theoretical line, the chosen distribution ~F

1Auxiliary materials are available in the HTML. doi:10.1029/
2008GL035967.
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describes the extremes properly up to a return period
corresponding to the length of the combined records
(equation (14)).
[20] 2. If all m points in a DX̂ n-plot are below the

theoretical line, the outliers are lower than ~F implies. This
means that ~F overestimates the probability of the high
extremes. In case of F being an extreme value distribution,
this points to incomplete convergence of the normalized
annual maxima to the extreme value distribution.
[21] 3. If all m points in a DX̂ n-plot are above the

theoretical line, the outliers are higher than ~F implies. This
means that ~F underestimates the probability of the high
extremes. In case of F being an extreme value distribution,
this points to incomplete convergence, or to the presence of

a second population in the far tail of F [van den Brink et al.,
2004a].
[22] 4. If the m points in aDX̂ n-plot follow the theoretical

line up to a certain Gumbel variate, and then start to be
higher, then this means that ~F describes only the more
frequently occurring extremes well, but underestimates the
probability of the less frequent extremes. This points to the
presence of a second population in the far tail of F.
[23] 5. If all lower points in a DX̂ n-plot are above the

theoretical line, and all higher points are below that line, F
has too many free parameters, and is inappropriate to
describe the extremes for return periods exceeding the
individual record length.

5. Example: Extreme Wind Speed in ERA40

[24] As an example of the method, we tested Cook’s
[1982] hypothesis that the normalized annual maxima of the
wind speed u follow a Gumbel distribution, if not u itself,
but uk is the fitted variable, with k the shape parameter of
the Weibull distribution:

F uð Þ ¼ 1� exp � u=að Þk
n o

ð17Þ

with a the scale parameter. He argues that the normalized
block-maxima of the Weibull distribution converge to the
Gumbel distribution for every value of k, but that the
convergence speed strongly depends on k, being optimal for
k = 1, which is equivalent to fitting uk.
[25] We tested Cook’s [1982] hypothesis by determining

the distribution of DX̂ n for the North-Atlantic region (59W-
10E and 41N-70N) by fitting a GEV- and a Gumbel
distribution to the annual maxima of both u and uk. For u,
we used the 44 annual maxima of the 10 m wind speed from
the ERA40-dataset [Uppala et al., 2005] for the period

Figure 1. Visualization of the concept of equation (11) on
a Gumbel plot. The probability of the most extreme event in
the record (the outlier) is Gumbel-distributed, which is
depicted by its probability density function g. In this
example the number of extremes n = 44.

Figure 2. Gumbel plot for DX̂ n for 10
4 records of random

length, from a randomly chosen distribution with randomly
chosen parameters. The theoretical distribution of DXn is
the normalized Gumbel distribution (solid line). The
abscissa represents the Gumbel-transformed number of
records m, as shown on the upper axis.

Figure 3. Gumbel plots of the distribution of DX̂ n for
fitting either a Gumbel- or a GEV distribution to m = 1000
records (each of length n) sampled from a Gumbel
distribution. The distribution of DXn is strongly under-
estimated if a GEV is fitted (even to records of 300 years
each), but is well represented if a Gumbel distribution is
fitted (even to records of only 40 years each).
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1958–2001, interpolated to a spatial resolution of 1�,
resulting in 2100 values for yn.
[26] The Weibull shape parameter k was determined for

every grid point from all 6-hourly wind speeds with u > a,
with a the Weibull scale parameter (see auxiliary material).
[27] If an extratropical cyclone determines DX̂ n for

multiple grid points, we only use the maximum value of
DX̂ n, i.e., we consider the cyclone only on its most
exceptional moment. We assume that cyclones are distinct
if the dates corresponding to DX̂ n differ by more than
3 days.
[28] This selection procedure leads in this example to 240

independent values of DX̂ n. Equation (14) implies that it is
likely that somewhere in the North-Atlantic area a 104-year
(240  44) event happened during the 1958–2001 period.
[29] Fitting a GEV distribution leads to a severely biased

distribution of DX̂ n, both for u (not shown) and uk (squares
in Figure 4a). The maximum value of DX̂ n of 2.84 corre-
sponds to a return period of about 750 years (equation (10)),
i.e., an underestimation by a factor 14. Fitting a Gumbel
distribution to the annual maxima of u (open circles in
Figure 4a) results in an underestimation of DX̂ n, indicating
incomplete convergence to the Gumbel distribution. How-
ever, fitting a Gumbel distribution to the annual maxima of
uk (closed circles in Figure 4a) gives a satisfactory agree-
ment with the theory, which confirms that the North-
Atlantic annual extremes of uk can be described by a
Gumbel distribution up to return periods of 104 years
(equation (14)). The same distribution for DX̂ n is obtained
for the winds on a 2.5�  2.5� resolution. We stress that
those return periods are only valid for the realization of the

climate represented by the 1958–2001 period of the ERA40
dataset. Analyses for detrended series (as a first estimate of
low-frequent variability) and of an apparently more homo-
geneous subset (1958–1990) lead to the same conclusion.
However, inhomogeneities may be an issue in other parts of
the world, especially on the Southern Hemisphere [Wang et
al., 2006].
[30] The 240 geographical locations of DX̂ n for the

Gumbel-fit to uk are shown in Figure 4b. The event with
the highest DX̂ n of 5.32 (return period 9�103 years) is
‘Martin’, one of the Christmas-storms in France [Ulbrich
et al., 2001] at (0E,45N) on 27-12-1999.
[31] A second result of Figure 4a is that in this area, no

second population of extreme wind speeds is detected.

6. Discussion and Conclusions

[32] We derived an expression for the distribution of the
probability of the most extreme events in (meteorological)
records. By combining the results for multiple records, the
empirical distribution of the probability of record-extremes
can be compared with the theoretical distribution of the
outliers.
[33] In climatology, the Gumbel and GEV distribution are

often applied to annual maxima. Here we showed that the
fitted GEV distribution on average severely overestimates
the probability of the record-extremes for most observation-
al record lengths (<100 year). This is caused by the presence
of an extra parameter in the GEV distribution, which makes
the fit too sensitive for sampling effects, and thus inappro-
priate for extrapolation. Possible practical solutions are to

Figure 4. (a) Gumbel plots of the distribution of DX̂ n for the annual maximum wind speed u for the North-Atlantic
region. The fitted distribution ~F is either a GEV distribution to uk, with k the Weibull shape parameter (squares), or a
Gumbel distribution to u (open circles) or uk (closed circles). The solid black line represents the theoretical normalized
Gumbel distribution of DX̂ n. (b) Geographical locations of the 240 independent values of DX̂ n when fitting a Gumbel
distribution to uk. The size of the symbols represent the value of DX̂ n, where triangles indicate negative values of DX̂ n.
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assume the GEV shape parameter to be constant over the
area, or to fit a Gumbel distribution either to the variable y
itself or to an appropriate power yk.
[34] Whereas the standard goodness of fit tests evaluate

the residuals within the observed time-domain, this tool tests
if the fit is appropriate outside the observed time-domain.
This is especially of importance for extreme-value statistics
as it is often used to make estimates for return periods that
amply exceed the record length.
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