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A theoretical expression is obtained for the energy distribution of sputtered dimers from crystal surfaces. The
derivation is based on a model where the atoms which constitute a dimer, are sputtered independently from the
crystal according to their respective single particle energy distribution functions. Two neighbouring atoms are then
supposed to form a dimer if the sum of their initial relative kinetic energy and potential energy is less than zero. A
comparison with experimental results for K, and KI sputtered from polycrystalline K and KI surfaces respectively,

shows a good agreement.

1 INTRODUCTION

Although it is known for several years that sputtering
results in the ejection of both monatomic and poly-
atomic particles, only in the last few years the energy
distributions of some charged!~* and neutral®~’
sputtered clusters have been reported.

A few attempts have been undertaken to explain
the observed energy distributions of the sputtered
clusters, which appear to be hyperthermal and show
a more rapid fall-off to zero than the monomer
distributions. Joyes® calculated the mean energy of
sputtered Cu, dimers, assuming that the dimer
receives its energy from another Cu atom from the
target. Baede, Jungmann and Los® compared the
energy distribution of K, dimers sputtered from
polycrystalline K with a thermal spike theory.
Staudenmaier? proposed a model in which the
clusters are assumed to be formed from the individual
atoms leaving the collisions cascade, and in which the
different binding energies of the various clusters with
respect to the surfaces determine their ejection
probabilities. In this paper we present a dimer
sputtering model which assumes that all dimers are
formed from recombination of two simultaneously
sputtered atoms. Assuming the initial energy distri-
bution of these atoms to be independent of each
other, we calculated the dimer energy distributions
from the monomer distributions. A comparison of
the experimental data with this independent particle
model shows that the model explains the observed
energy distribution of the dimers very well.
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2 THE MECHANISM OF DIMER FORMATION

In this section a precise formulation of the adopted
mechanism for dimer formation is given. The basic
assumptions are the following:

1) Particles belonging to a single collision cascade
leave the surface at the same time ¢,.

2) The constituent particles of a dimer belong to
the same collision cascade. Two such particles form a
dimer if at the initial time #, the sum of their
potential energy V(7o) and their relative kinetic
energy € does not exceed zero:

V(re) +€<0 2.1)

3) The formation of trimers and higher polymers
is excluded.

In order to perform numerical calculations some
further assumptions will be made:

4) All particles belonging to a collision cascade
are sputtered independently, their initial distribution
function ¢(E, ) (F is the kinetic energy, $2 the solid
angle) being given by the corresponding monomer
distribution function. ‘

5) The monomer energy distribution function f;
of species j is given by

F(E, Q) =NE(E + E, Dy~ (%+1 cos A (2.2)

where E;, () is the binding energy of an atom of
species j with the surface, #; is a constant, N; a
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normalization constant and A is the angle with the
normal to the surface. Formula (2.2) is obtained
from the assumption that in the collision cascade the
energy distribution of atom j is proportional to
E—nj.9, 10

In many cases condition (2.1) excludes the
formation of dimers from particles which are initially
not neighbours. This is due to the circumstance that
usually V(r,) is close to zero for such a pair of
particles, whereas € is always positive. If, on the other
hand, the two particles are neighbours, then it makes
sense to approximate V(ro) by —~E,; where Ej is the
dissociation energy of the dimer. Thus:

6) Dimers are formed only from neighbouring
atoms in the lattice. Their formation is subject to the
condition

e<E, (23)

The above assumptions allow the calculation of the
energy and angle dependence of the dimer distribution
function. For the normal direction the velocity
distribution of the dimers dS/dv is found to be (see
section 3):

ds
’é‘; = 21rN1N2(m1 + mz)
(2"'Ed)"2
d¢-¢?
0 —min(1,m,v/¢)
y [mlvz + {2 + 2m1 U{Z + 2m1Eb(l)] —(n,+1)

[mav? + 8% — 2myutz + 2my E, Pt (2.4)

min(1, m,v/t)

in which m, and m, are the masses of particles 1

and 2, u their reduced mass, and N, and N, the
normalization constants of the monomer distributions.
From this one obtains the energy distribution dS/dE
through the relation

L, ds
dv

dS dS dv
= o d

= i 2.5
dEE dv dE (2:5)

v

dS/dE behaves as follows: it starts linearly from zero,
passes through a maximum and falls off to zero at
high energies as £—":—n2—1.5 which is indeed much
more rapidly than the energy distributions of the
monomers.

The behaviour of this function is illustrated in
Figure 1 on a log-log plot for a homonuclear dimer
X, withE;=05eV,E,=1.0eVandn=1.5.1tis
not possible to obtain a better than order of magnitude
estimate for the ratio of monomers and dimers at a
given energy and in a given direction. For this a
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FIGURE 1 The energy distribution of dimers X,,

' calculated from the atomic energy distribution with

E4=0.5eV,Ep=1eVandn=1.5.

specific knowledge is needed about the statistics of
the occurrence of the various configurations at the
surface of particles to be sputtered.

3 THE CALCULATION OF THE DIMER
DISTRIBUTION FUNCTION

3.1 The Distribution Function

According to the model put forward in the previous
section, the calculation of the dimer distribution
function amounts to a calculation of the available
phase-space under condition (2.3). The normalized
probability density for two neighbouring particles to
have relative energy € and centre-of-mass velocity V
is given by

wee, V)= [dps | dpadi(® )62 (p2)5(e — Ere)S(V = Vo)

(3.1)

Here p is the momentum vector of particle j and ¢;(p;)
is the normalized momentum distribution function
for sputtered monomers of species j. The relative
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energy E,q and centre-of-mass velocity V¢, are given
by |

Ere =3u(pi/my — p2/m2)?, Vem =M~'(py + p2)

(3.2)
where m; is the mass of a particle of species j,
M=m; +m, and u=m,m,/M.
After a change to centre-of-mass and relative
variables according to
P=p; +p2, p=M(p1/m1— p2/m2), (3.3)

w(e, V) can be written as

w(e, V) = [ dP [ dpoy((m/MP + p)pa ((m2/M)P— p)
-8(e — p*/2)8(V — P/M) = 2My [ dpés(m1V +p)
- ¢2(my V — p) - 8(p* — 2pe)

The remaining 8-function can be removed by means
of the identity

5(p? — 2ue) = 3(2ue)" V{5 (p — (2ue)V?)
+8(p + (2ue)?)} (3.4)

To achieve this p is written as p = pu, u being the unit
vector along p. Then dp = p®dpdu, du indicating an
integration over a solid angle, and

w(e, V) = 2Mu fdP‘P2 fdu¢1(m1V+pu)

G2(maV = pu) 3 {5(p — ©) + 8(p + 1))
=Myt [ dugy (m, V + fu)gs (2 V — Su) (3.5)

with
¢ = (2ue)Y/? (3.6)

From this the normalized dimer distribution function
w(V) is obtained by integration over € from zero to Ey;

Ed (2”'Ed)l/2
w(V)= [ dewe, V) =M J

0

ds-¢* | du

oMy V+Eu)-¢,(myV—2tu)  (3.7)
Thus w(V) is the normalized probability density for
finding a dimer with velocity V, i.e. with an energy

E = V?/(2M) in the direction of V. In order to proceed
it is necessary to substitute explicit expressions for

the ¢;(p;). The relation between ¢(p) and f(E, §2)

given by (2.2) is (the subscript j is dropped for the
moment):

A(E, Q)EdSL = K¢(p)dp, E = p*/(2m), dp = p*dpdQ
(3.8)

where K is a proportionality constant. From this the

following normalized monomer momentum dis-
tribution is obtained for species j:

8;(p;) = N;(p; - e)h((p; - ) - (p;* + L)~ "+ 1) (39)
Here e is the unit vector normal to the surface,
N; = 2n(nj — VLJ™Y I, Lj = 2m;E, @) (3.10)

and the Heaviside step function A((p; - )) (A(x) = 0,
x < 0 and A(x) = 1, x = 0) takes into account that
sputtering only takes place in one half space. Since
w(V) is symmetric about e, V can be fixed in the
YZ-plane in a coordinate system with e along the
positive Z-axis. The angle between V and e will be
denoted by 0. Let the polar angles of u be 4 and ¢,
so that

V-e=Vcos8 V-u=V(sin sindsin Y + cosf cos &)

n-e =cosd du =sin $d9dyY (3.11)
Then
@uEg)'" 2m -
w(V) =w(V, 6) =MN N, I d¢ - &2 Id¢'fd§’sm0
0 - On 0

L (m,V cos 8 + ¢ cos3)h(m, V cos 6 + ¢ cos &)
- (M3 V cos @ — ¢ cos 9)h(m, V cos 8 — ¢ cos §)
[m2V? +¢% + 2m, VE(sin 9 sin 9 sin ¢
+cos 8 cos 9)+ L]~ (m*D)
[m22V? +¢% — 2m, V¥(sin 0 sin 9 sin ¢
+cos 8 cos §)+ L]~ 1),
It is convenient to change from $ to z = cos 9. Then

the Heaviside functions can be replaced by a condition
on the integration interval for z:

w(V, 0) =

(uE g) 1/2 2w +min(1,m, V cos 6/%)
MN,N, j d¢ - ¢2 j dy j dz

0 0 - min(1,m; V cos 8/¢)

(M, V cos 0 + §z)(m, V cos 0 — {z)

[m,2V? +¢2 +2m, Ve{sin 0(1 — z2)"?

.siny +zcos@}+ L]~ m*D)

 [my2 V2 +¢2 — 2m, Vi{sin 6(1 — 2*)V/?

-siny +zcos@}+L,]~ (Mt (3.12)

This is the final expression for the distribution function
of sputtered dimers. For the case 8 =0, i.e. sputtering
of dimers in the direction normal to the surface it



272 G. P. KONNEN, A. TIP AND A. E. DE VRIES

simplifies significantly:

w(V, 0) =
(2“Ed)l/2 +min(1,myV/%)
wMN, N, [ @ - [ @
0 —min(1,m V/})
(M V +§z)(my V — §2)
[m2V? +¢2 4+ 2m, Vez + L]+ D)
[ma2 V2 + 8% — 2my Viz + L]~ et
(3.13)

In Section 4 the results of numerical calculations of
this expression are given and compared with experi-
mental data on dimer sputtering.

3.2 Asymptotic Behaviour

It is not difficult to obtain from (3.12) the behaviour
of w(V, 8) for V tending to infinity and zero, res-
pectively. In the first case it is even more convenient
to turn to the expression (3.7) for w(V). For large
absolute values of V the term {u in the argument of
¢; can be neglected, since { ranges through the

bounded interval [0, (2uE ;)" ?]. Thus, for V tending
to infinity:

(2uE 4)! 2
w(V,0)~M [ dt-¢*- [ dug,(m,V)p2(m,V)
0

~ (4’”/3) ’MVINQ : 7’21—(2'1l +l)m2—(2n2+l)

-(QUEZ)3/2 - Y2, +ny+1)  cos?f  (3.14)
The behaviour of w(V, 6) for V tending to zero is
obtained in the following way. It is convenient to

split w(V, 8) into four parts and to consider each
part separately. Thus for § < #/2:

m,V cos @ 1
wv,0)= [ at[az...
0 0
(2;l.li’d)”2 maV cos /¢
+ [ a [ a...
m,V cos 6 0
miV cos 6 0 (2“Ed)l/2
+ j d¢ [ dz ...+ j‘ dt
0 -1 m,V cos 6
0 4
I dz... = Z
—myV cos 0/¢ =1

wi(V, 0) (3.15)

For small V the terms L and L, in the denominator
become the leading terms in w;(V, 8) so that

wi(V, 0) ~ 20MN N, LT @1 ¥ 7 @2 *1)

maV cos @ 1
f dt-¢?- I dz(m,V cos 0 + {z)
0 0

. (my Vcos 0 — {z)

= 20MN N, [(5/24)mymy* + (7/120)m,*]
Ly @ADL @2+ ) (o5 9)° (3.16)

By interchanging the subscripts 1 and 2 the correspond-
ing expression for w3 (¥, 6) is obtained. In w,(V, 8)
and w4(V, 0) the leading term in the denominator is
[ + L]~ ¥ [¢2 + L,]- (2D since now ¢ ranges
up to (2uE4)'"?, instead of m;¥ cos8,j =1, 2 in the
former case. Thus, for V tending to zero:

~ (2uEg)' 2 maV cos 8
wa(V, 0)~2MN\N, [ dg$* | dz
m3yV cos B 0

‘(myVcosO + ¢z my Vcos 0 — §z)

B.z + ] —(n,+1) [§2 + ] (n, +1) .

(2UEg)
~21r11'INlN2(%m1m2 +1/6m23) J'
0

dE-§[62 + L]~ [¢2 4 L,] (D)

V3 cos® 6, (3.17)

and the corresponding expression for w4 (V, 0) is
obtained by interchanging the subscripts 1 and 2.
Comparing the result with (3.16) it is seen that
wy(V, 0) and w,(V, 0) are the leading terms for V
tending to zero. Hence, for V tending to zero:

w(V, 0) ~ 2aMN N,(3mymy2 +m>m, + (1/6) m, 3
+ (1/6)m3>).
(2uE )12
[ dg3g? 4Ly

0

[£2 + L] 2D p3 cos® g (3.18)

4 COMPARISON WITH EXPERIMENTS

To compare the present theory with experimental
data, one has to know the parameters £, and n of
the energy distribution of the monomers. However,
only for the systems K, and KI enough experimental
data on the monomer distributions are available to
make this comparison possible. In this section we will
discuss these two cases.
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4.1 The K, Distribution

Baede, Jungmann and Los® measured the energy
distribution of K, dimers sputtered from a poly-
crystalline K target under Ar* ion bombardment of

8, 11 and 13 keV Kkinetic energy. The sputtered K

and K, neutrals were separated by an inhomogeneous
magnet and measured by a surface ionisation detector.
The energy distribution of the dimers was found to

be independent of the Ar* energy. The measured
signals were corrected for scattering on the back-
ground gas. There were indications that part of the
signal was due to reflected atoms. Assuming the
number of dimers to be zero at 4 eV kinetic energy,
the measured points were also corrected for this
effect. However, since evidence was obtained from
chemi ionization experiments that alkali dimers are
still present at S eV Kkinetic energy, this last correction
was considered to be too crude. The true K, spectrum
was supposed to lie between the corrected and
uncorrected points.

In the experimental set up of Baede et al the
particles were detected under an angle of 22.5° with
respect to the normal of the target. However, the
large Ar* current causes damage of the target surface
after a short time so that the direction of the normal
of the target becomes quite undefined. For the
theoretical energy distribution we therefore used
formula (2.4) and (2.5) for the normal direction.

In Figure 2 the experimental points of Baede et al.
are compared with the present theory. Since Baede
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FIGURE 2 The energy distribution of K, dimers sputtered .

from a polycrystalline K target. The solid line represents the
theoretical curve with E4 = 0.55 eV, E, =0.71 eV and

n =1.525. The open and closed circles are the measured
points by Baede et al., respectively with and without the two
corrections discussed in the text. The theoretical curve and
experimental points have been normalized at 1.1 eV.

reported the quantity E - (dS/dE) as a function of
energy, his measured points have been divided by a
factor E to obtain the energy distribution dS/dE.
The parameters of the monomer distribution are
taken from measurements of Politiek and Kiste-
maker,'? giving n=1.525 and E), =0.71 eV for K
sputtered from polycrystalline K under 8 keV Ar*
bombardment. E; was chosen to be 0.55 eV, which
is the dissociation energy of K, molecules in the
gasphase.'! The open and closed circles in the figure
are the measured points of Baede et al., with and
without the two corrections discussed above. The
measured points and the theoretical curve have been
normalized at 1.1eV, as is the case in Baede’s plot.
The theoretical curve coincides well with the
experimental points, lying indeed between the open

-and closed circles as is expected to be the case for

the true experimental K, energy distribution. It
seems that the present theory explains the experi-
mental data better than the thermal spike model
does, which was applied by Baede, also since the
latter model leads to an improbably high spike tem-

i perature of 7820 K.

4.2 The KI Energy Distribution

The energy distributions of K, I, KI and K, I,
sputtered from a polycrystalline KI target under
6 keV Ar* ion bombardment were obtained
recently.’

The I, KI and K,I, distributions were measured
by mass spectroscopy, while for the K distribution
positive surface ionization was used. The parameter n
was found to be 2 for I atoms and 1.5 for K atoms.

The parameter E}, is more difficult to obtain from
the monomer distributions since one can expect that
formation of polymers will lower the original atom

- distributions. However, the velocity and direction of

a heavy I atom will not change very much if a K atom
sticks to it. So, if one adds the measured I, KI and
twice the K, I, fluxes as a function of velocity for a
given direction, the sum thus obtained represents to a
good approximation the initial I velocity distribution.
From the distribution found in this way we got

Ep, = 0.4 eV. This rather low value of E}, agrees with
the measured one for the halogens from NaF and

KCl, being respectively 0.26 and 0.31 eV.!? For K
atoms £, was inferred from the observed similarity
of the K atom distribution from polycrystalline KCl,
KBr, KI and K targets, which indicates that the
binding energy of a K atom on the alkalihalides must
be the same as for the alkali metal, giving E}, = 0.7 eV.



274 G. P. KONNEN, A. TIP AND A. E. DE VRIES

A theoretical calculation indeed yields £, = 0.7 eV
for K from KCI'® and in view of the foregoing
remark we therefore adopted this value also for KI.
Finally the dissociation energy E; of KI is known
to be 3.3 eV.! In this experiment the detectors were
placed in the direction of the normal of the target
and the energy distribution of the dimers was again
calculated from formula (2.4) and (2.5). In Figure 3
the experimental curve is compared with the theory.
The uncertainty of the measured points for KI
increases with decreasing energy. The best values were
obtained for energies above 4 eV by suppressing the
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FIGURE 3 The energy distribution of KI. The solid line
represents the theoretical curve with n =2 and Ej, = 0.4 eV
forI,n=1.5and Ep = 0.7 eV for K; Ez=3.3eV. The
closed points are the experimental data. The curve has been
normalized at 4.2 eV.

background signal. The curves have been normalized
by fitting the experimental points at an energy of
4.2 eV.

Finally dividing the dimer- by the monomer-
intensity at a given energy by means of Egs. (2.2),
(2.4) and (2.5) the absolute height of this ratio was
calculated. As explained in Section 2 this value can
be expected to indicate only the order of magnitude
of the real dimer to monomer ratio. Nevertheless the
calculated ratios were found to agree with the experi-
mental ones within a factor two for both K, and KI.
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