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ON THE ENERGY DISTRIBUTION OF SPUTTERED CLUSTERS
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Our previous model on dimer sputtering is extended to the formation of larger clusters. The general formalism for

the calculation of the momentum distribution function of these clusters is given. A simple analytical expression is
obtained for the distribution function of any cluster in the high energy limit. Comparison of this expression with
cxperimental data on the energy and angle distribution of Wk+ clusters at high cnergies shows good agreement. The
experimental results on Kj and KI sputtering with low energies are recompared with the theory. For the ionic crystal
Kl, evidence is obtained that sputtering of non adjacent K and | atoms from the lattice gives an important contribution
to dimer formation. The role of the binding cnergy £ of the particles with respcct to the surface is discussed.

1 INTRODUCTION

In a previous paper’ (referred to as I in the following),
we considered a simple model for the description of
dimer formation during sputtering from solid targets.
Since the results of this model compare rather favour-
ably with experiment,’ it makes sense to extend this
theory to the formation of higher clusters. In the
present paper the generalized formalism is given for the
calculation of the energy distribution of sputtered
k-particle clusters. For the high energy limit, a simple
analytical expression is obtained for the energy distri-
butions of k-particle clusters. The high energy experi-
mental results on W;* clusters, sputtered from tungsten
surfaces, are found to be well described by this
expression.

During the course of these calculations it was found
that the original formula of the energy distributions
of dimers, as presented in I, contained an error which
urges a recomparison with experimental results. In the
present paper the correct dimer formula is given, which
also is found to give agreement with the experiments.

2 THE MECHANISM OF CLUSTER SPUTTERING

In this section the formulation of the mechanism as

given in I, is generalized for k-particle cluster sputtering.

The basic assumptions are then:

1) Particles belonging to a single collision cascade
leave the surface at the same time ¢,.

2) The constituent particles of a cluster originate
from the same collision cascade. A set of k particles
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_ potential energy V(x,
» energy €() of the k particles does not exceed the

Jocated at x,, x5 ...x; on the surface will form a
cluster if at the initial time ¢o the sum of the total
... Xx) and the relative kinetic

th;()eshold' for any dissociation channel of the cluster

xe) <e§d (2.1)

3) The formation of clusters with more than k
particles is excluded.

4) Particles belonging to a certain collision cascade
are initially uncorrelated. Thus the momentum distribu-
tion function of any k-particle cluster factorizes at time
1o into a product of one-particle functions.

In the following dS/dE denotes the probability density
for a particle to be sputtered with energy E and in the
solid angle 2, dS/dV the probability density to be
sputtered with velocity V and in the solid angle §2 and
@¢(P) the probability density to be sputtered with
momentum P. Using the relations ¢(P)dP =

&P, QP> dPdS) = dS/dE dEdS = dS/dV dVdS) it
follows that

HP)=M"'P 2 dS/dV =M"'P! dS/dE
(E=4MV2 P=MV) (2.2)

where M is the mass of the sputtered cluster. In order
to be able to perform numerical calculations, an
additional assumption will be made:

5) The initial one particle energy and angle distribu-
tion functions mentionied under 4 are of the form

dS/dE = GE(E + EP) (" * Df(Q) (2.3)



24 G. P. KONNEN A. TIP AND A. E. DE VRIES

where EY) is the binding energy of an atom of species
J with respect to the surface, n; is a constant, C;a
normalization factor and f;(§2) the angular distribution
of the sputtered atoms.?'3 -

In many cases condition (2.1) excludes the formation
of a k particle cluster if these k particles are initially
not neighbours. This is due to the circumstance that
usually V(x, ...xy)is close to zero for such a set of
particles, whereas e(¥) is always positive and e{¥), <0.
For small clusters formed from neighbouring particles
it often makes sense to approximate £ 4 = eis —

V(x, ...xx) by the lowest dissociation energy E{)
of the cluster in the gasphase. In general however,
E4 <E$ . Thus condition (2.1) can be rewritten as

e <E;<EP (2.4)

In the present paper the momentum distributions

¢(X)(P) of k-particle clusters will be calculated explicitly.

From this, one obtains the energy distributions dS/dE
and the velocity distribution dS/dV easily with (2.2).

3 CALCULATION OF CLUSTER DISTRIBUTION
FUNCTIONS

3.1 General Formalism and Dimer Formula

The calculation of the distribution function for
clusters proceeds along the same line as described in I,
section 3. Consider a cluster to be built up from two
sub-clusters 1 and 2. Let ¢; be the relative kinetic
energy of the particles in subcluster j at time ¢, at
which the subclusters leave the surface. Then, the
normalized probability density for these clusters to
have relative kinetic energy €,, and centre-of-mass
momentum P is given by

$12(P,€12,€1,€5) =

_[dpl f dp,9:1(p1, €1 }02(P2» €2)
: 6(512 _Erel)5(P - Pcm) (3']-1)

where p; is the total momentum vector of sub-cluster
j» and ¢;(p;, €,) the normalized momentum and initial
internal energy distribution function for sputtered
subclusters of species j. The relative kinetic energy is
given by

Erer =41 (p1/my) — (p2/m3)?,

in which m; is the mass of subcluster j and u = mm5/
(m'y + m3) the reduced mass of the system. The trans-

formation to centre of mass and relative variables is
given by

Pen = p1 +pa2, P =(P1/’71'1 —Pz/m'z) (3.1.2)

The transformation in I, (3.2) second formula is not
allowed since it contains a factor M~! instead of M~3.
In these variables, ¢,,(P, €,,, €;, €2) can be written as

b12(P, €12, €1, €2) = [ AP | dp 63 (1} [M)Pyy +
P, €1)92((m2/M)Pcy, — P €2).

5(e1z — P 12605 (Perm — P) = 2u [ dp 61(a 1P +p, €1)
$2(q.P —p, €;) - 8(p* — 2ue,2)

in which
qj = mj/(m} + my) = m;/M.

After some manipulations, described in I chapter 3,
and introducing

¢ = (2#_‘512)]/2, and p = pu,

u being the unit vector along p, this reduces to

$12(P, €12, €1, €3) =u§fdu ¢1(q,P+
Cu, €;)92(q2P — $u, €,)

For dimer formation, ¢,~(P{-, €;) are the distribution
functions of the atoms ¢1- )(p,-), for which of course
€; = 0. The normalized dimer distribution ¢(2)(P) is
then obtained from (3.1.3) by integration over €,,

from zero under condition (2.4):

(3.1.3)

¢ D(P) = ¢,,(P) = fd€12¢12(P, €12 )1(Egq — €12)
0 (3 1.4)

where the Heaviside step function h(E,; -- €,,) fixes
€1, in the bounded interval [0, E;]. Thus

Egq
¢(2)(P) = f dey2912(P, €12) =
0

(2uEg)"?
[ aset [ dug{ @ P+ 5u)ef(a:P - tu)
0

(3.1.5)

with m,'- = m;, the atomic mass of particle j. According
to assumption V using (2.2) one has for f{§2) = cos 0
(6 is the angle with the surface normal e)

5 () = Ni(p; - e)h((p; - ©)) - (p? + L)+
(3.1.6)

and

Nj=2nynj — DL ~Ym, L; = 2mE§) (3.1.7)
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As in I, the dimer distribution function ¢3)(P, ) then
becomes

(2uEg)""? 2w
6O, 0=NN, [ e [y
0 0 |

+min(1, q,P cos 8/%)
fdz |
—min(1, q,P cos 6/%)

(g P cos B +$zXq,P cos 0 — ¢z) |

+[q12P* + £ +2q,Pt{sin 0(1 — z*)"/? sin { +z cos 0}
+L, ]"("l"’l)

- [@22P? + £% — 29,Pt{sin (1 — z*)"? sin Y + z cos 8}
+ L2]-(n2+l) | (3.1.8)

which reduces for 6 =0, (i.e. sputtering of dimers in
the normal to the surface) to

(2uEg)''? +min(1, q,P[¥)
$D@,0=2mVN, [ a5 dz
0 —min(1, q,P(t)

(@1P + £2)(q2P - £2)[q,2P? + {2 + 29, Ptz + L] (Mt D)
[922P? +§* — 29,Pz + L,]" ("D
(3.1.9)

The energy distribution dS/dE and the velocity distri-
bution dS/dV for dimers are found with formula (2.2).
In I, this analogous transformation has erroneously not
been made As a result of both these corrections (see
“also formula (3.1.2)), the present result for dS/dV for
dimers contains a factor M2 V'? which did not appear
in the previous result in I.

The asymptotic behaviour of ¢*)(P, 0) for P
tending to zero and infinity is derived in the same way
as in I, chapter 3.2, and results in

$NP, B)p—sea ~ (47/3) - N1 Ny - g7 3+ gy Bt ).
(zuEd)3/2 ,P-z(n, +n,+1) cos? 6
(P, 0)po ~ 20N N2 (30142 +1g.%q2 +
1/6q,> + 1/6q,%).
(2uEq)'"? -
- [dg 162 + LD + L] PP cos® 0
0 (3.1.10)

so that the dimer energy distribution dS/dE behaves
as follows: it starts from zero proportional to E2,

passes through a maximum and falls off to zero at
higher energy as E~"17"270:5
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3.2 High Energy Distribution Function for a
k-Particle Cluster

The formalism developed in chapter 3.1 allows the
calculation of the distribution function of any
k-particle cluster. The cluster distribution function
¢12(P, €12, €1, €2) is given by formula (3.1 3):

?12(P, €12, €1, €2) =u§'J'du¢,(q1P+ u, €;)

© $2(q2P — §u, €3) (3.2.1)
Clearly, €,, + €, * €, represents the total internal
kinetic energy e(%) of the atoms in the cluster at time
to. The bound cluster distribution function ¢, (P) is
found by integration over €2, €; and €; under
condition (2.4):

Qo

$12(®) = |

0

c o Ide,zde, dGz
. 0

- $12(P, €12, €1, €2)N(Eq — €12 — €1 — 52) (3-2-2)

in which the Heaviside function h(Eg — €12, — €1 - €3)
takes into account that the initial internal kinetic energy
never exceeds the dissociation energy E4 of the cluster
at time 7. It can easily be proved that under assump-
tion IV, (3.2.2) is independent of the choice of sub-
clusters 1 and 2. Therefore these formula allow the
alculation of any clusterdistribution function, starting
with the monomer distribution functions ¢,(‘ )(p,-).

For the high energy asymptote of the cluster
distribution function, the term {u in (3.2.1) can be
neglected. This is due to the fact that in (3.2.2) §
ranges through the bounded interval [0, QQuE4)'?]
due to condition (2.4) and because ¢; is bounded from
below (¢ > 0). Thus, for P tending to infinity

¢12(P, €12, €1, €2) ~ 1§ Id“ 01(q1P, €1) $2(q2P, €2)

o« eiéz 01(q1P, €1) 92(q2P, €2)
(3.2.3)

Formulae (3.2.3) and (3.2.2) are convenient starting
points for the study of the behaviour of the k-particle
cluster distribution ¢(*¥)(P) at hi§h energies, starting
with monomer distributions ¢(*)(p). This will be done
explicitly for homonuclear k-particle clusters Xg, the

- generalization to different situations is obvious.

For the construction of a k-particle cluster distri-
bution function from the monomer distribution function,
we define the parameter €; x_, , being the relative
kinetic energy of particle k and the subcluster consisting
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of all k-1 subsequent particles. Then, for dimers X,
formula (3.2.3) becomes

$ (P, €1,1) « el/3 6V(P/2)¢()(P/2) =

el't [6((P/2)]? (3.2.4)
For trimers, one finds |
6P, €11, €1,2) x e}/ (P/3)6>)(2P/3)

«ellfeiZ [p®IB)P  (3.2.5)

and so on. In a similar way, for a k-particle cluster

(k) k-l 1/2 (1)

O (P, .. €1, k) H eryx | [0 (P/K)]*
» = (3.2.6)

Note that 3 e , is the internal kinetic energy e(%)

of the clusterlat to. Integration over all €; ,_, )’ICldS
the distribution function ¢(*)(P). Since ¢(")(P €1,1.

t - 1) is factorized into a product of €} / % and
¢'")(P/k), one gets

k-1

¢*)(P) {J Jdeu- .dey g1 []

x=1

-eiZh(Ey— 3 Gn,x)} - [o)(P/K)]*

x=1
o« [¢(@/K)]*

From the asymptotic distribution functions of the
atoms (see section 2)

dS/dE « E-"f(2); ¢(P) = P~ (27 * 1))

(3.2.7)

(3.2.8)

the behaviour of the k-particle cluster distribution
function at high energy is according to (3.2.7) and
(2.2)

¢(k)(P) P P-(2n + l)kfk(a)

dS/dE o« E~¥n=0-5(k-1)rk(j) (3.2.9)

For a heteronuclear particle Y, Yj, one finds in the
same way for the high energy asymptote

¢(k)(P) (e d P‘(2”1 +1)k - (2n,+1) sz{‘l (Q)f2 ’(Q)
dS/dE o« E-k,n,—k,n,-o.s (k,+k,~- l)f{‘n (Q)ff‘(ﬂ)
(3.2.10)

where the index of n and J(S2) refers to the monomer
distribution functions of X and Y.

4 COMPARISON WITH EXPERIMENTS
4.1 Asymptotic Behaviour

~ Staudenmaier® reported the energy distributions dS/dE

of some Wy clusters, sputtered from a polycrystalline
tungsten surface by bombardment with 150 keV He*,
Ne*, Ar*, Kr*, Xe* and Cu® ions. The clusters were
detected under an angle of 40° with the surface
normal. The energy spectra of W*, W,* and W;' ions
were measured over a wide energy range and showed
an E ™" behaviour at higher energies.

Since the energy distribution of neutral W, sputtered
from polycrystalline tungsten is not known, it is not
possible to calculate the energy spectra of the cluster
ions for the whole energy range. The asymptotic
behaviour of the energy spectra at the high energy
limit of Wy (k > 2) and W however can be calculated
from the reported W' and W,* asymptotes according
to formula (3.2.10). This of course implies that Wy
clusters are assumed to be formed from the association
of one W' ion and k—1 Watoms, which are indepen-
dently sputtered. From the reported values of n for

DO
>
&
g Fiy W
b 4 1-
B e v
O0g
AL N -
° 52 2\ S
o 03&
3 © o °_x
U'—-;-f B B0 keV
%g ) % v ne
+ 4 + + e
W, +93 goWZ o Ar
¥ g a Cu
p (o]
% \‘°+ ° l;r
la + e
\
o4
e
a\\
' NG
\
10 . °
100 IOOOeV

FIGURE 1 Energy distribution of W* W," and W3 clusters,
sputtered from a polycrystallme tungsten surface, as reported
by Staudenmaier.* The dashed lines are the experimental £~
energy distributions, the sohd line represents the theoretxcal
asymptotxc behaviour for W3", as predicted from the W*and

W,* curves.
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FIGURE 2 Angular distributions of W3* and W, * clusters at
30 eV. The points are experimental data of Staudenmaier.®
The crosses are the theoreucal points, predlcted from Stauden-
maiers W* and W, *distributions at 30 eV.® The theoretical
pomts have been normalized at —4°. The error, mdlcated at
-8° lS obtained from the experimental error in the W' and
W2 distributions.

W* and W,* (0.5 and 3 respectively) one find the W
asymptote to be E~%, which is the value to be expected
from the sputtering theory.?* The W;* asymptote is

found to be £7°-5. Comparing this asymptotic behaviour

with the experimental data of Staudenmaier, one con-
cludes that the agreement is within the experimental
error, as can be seen from Figure 1.
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FIGURE 3 Angular distribution of W3 clusters at 60 eV.
The points are the experimental data of Staudenmaier.® The
Crosses are theoretxcal points, predicted from Staudenmaier’s
W' and W2 distributions at 60 eV.% The theoretical pomts
have been normalized at —4°. The error, indicated at 4° is
obtained from the experimental error in the W* and W,*
distributions.

Further measurements of Staudenmaier® enable us
to test the predicted angular distributions of sputtered
clusters in the high energy limit. Angular distributions
of W,.* clusters (k < 4) were reported around the (111)
direction of a tungsten single crystal (the surface
normal being (110)) at 30 eV, and of W;" (k <3) at
60 eV. All W," clusters show a maximum intensity

around the (111) direction.
From formula (3.2.10) the angular distributions of

W,* and W,* clusters at a given energy are easily
calculated from the reported W* and W,* distributions.
In Figures 2 and 3 the calculated distributions of these
clusters at 30 eV and 60 eV respectively are compared
with the experimental distributions. They are found

to be in agreement within the experimental uncertainty.

4.2 Low Energy Distributions of Dimers

Since formula (3.1.9) leads to a somewhat different
result for the dimer distributions dS/dV compared to
those in 1, in this section the data on K, and KI
sputtering w1ll be rediscussed. In Flgure 4, the experi-
mental energy distribution of K, is given, measured by
Baede et al.” The open and closed points are the
measured points of Baede, with and without the
corrections discussed in.” Using the parameters of the
monomer distributions of K, as reported by Politiek
and Kistemaker? (n = 1.525 and E}, = 0.55 eV), the
dimer distribution could not be fitted with the theo-
retical distribution obtained from (3.1.9) and (2.2).
Taking however £}, = 0.3 eV, the theoretical curve
coincides with the experimental points over a wide

energy range. To demonstrate the sensitivity of the
theoretical curve for changes in £, in Figure 4 also
the curves for £ = 0.25 eV and Ep = 0.35 eV have
been drawn. All curves have been normalized at 1.1
eV, as is the cause in Baedes plot.

Measurements of the energy distributions of K, I
and Klsputtered in the normal direction of a poly-
crystalline KI target under 6 keV Ar* bombardment
have been reported previously®. The parameter n was
found to be 2 for I atoms and 1.5 for K atoms. The
binding energy F; of the atoms can be obtained by
fitting the experimental curves with formula (2.3).
This yields E b= 0.7 eV and 0.4 eV for K and I atoms
respectively.

The dissociation energy of KI molecules in the
gas phase is 3.3 eV,”'!? The closest distance R, of K*
and I~ ions in the lattice is 3.5 A® which is somewhat
larger than the distance of 3.0 A'® between K and I
in the molecule. For this internuclear se;l)aration, the
value £4 can be calculated to be 3.0 eV.!° This
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FIGURE 4 The energy distribution of K, dimers sputtered
from a polycrystalline K target. The lines represent the theo- .
retical curves with E4 = 0.55eV,n=1.525 and Ep = 0.25 eV,
0.30 eV and 0.35 eV. The open and closed circles are the
experimental points of Baede et al.,” respectively with and
without the two corrections discussed by these authors. All
curves have been normalized at 1.1 eV,

difference however does hardly influence the shape
of the theoretical energy distribution. |

Contrary to the covalent molecule K,, the potential
energy of the ionic KI molecule has a very long range
due to the Coulomb attraction; this range extends to
the crossing point of the covalent and the ionic
potential curve in this molecule at 11.3 A.'! It can
therefore be expected that sputtering of non-adjacent
K and I atoms from the lattice also gives a contribution
to dimer formation. The KI crystal has a fcc NaCl type
structure. In this lattice, there are four possible con-
figurations of K and I atoms with a distance below
11.3 A,at 3.5,6.1, 7.8 and 10.5 A. From the Coulomb
potential the value of E4 for an internuclear separation
of 6.1, 7.8 and 10.5 A are calculated to be 1.1, 0.6 and
0.1 eV respectively. The probabilities for sputtering a
KI pair in either of the contributing configurations are
taken to be equal. Evaluation of formula (3.1.9) then
shows that K and I at 10.5 A gives hardly any contri-
bution to dimer formation, but the other configurations
cannot be neglected.

In Figure 5 the experimental energy distribution of
KI is compared with the theory. The solid line represents
the sum of the three contributions with £ =3.0 eV,
Ejz=1.1eVand E4 = 0.6 eV. The theoretical curve
has been normalized by fitting it with the experimental
point at 4.2 eV. Again, lower E, values than expected
have to be chosen to get the optimal fit to the theo-
retical curve with the experimental data. In Figure S,
Ep =0.2 and 0.1 eV for K and I respectively. Such
changes in E;, however influence only the shape of the
theoretical curve below 3 eV.

104

ﬁ .
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(-3

c I v v L4 4 v I A v LJ v
0 -] 10
energy (eV)

FIGURE 5 The energy distribution of KI. The solid line
represents the theoretical curve (see text). The parameters of
the monomer distributions are n = 1.5, E = 0.2 eV for K and
n=2,Ep =0.1 for I. The points are the experimental data.®
The curve has been normalized at 4.2 eV.

——— ey

If only the contribution with £; = 3.0 eV is taken
into account, the resulting curve cannot be fitted with
the experimental points above 3 eV for any choice of
Ep. The sum of all contributions however agrees well
with the experimental data, as can be seen from
Figure 5. From this it can be concluded that dimer
formation from non-adjacent particles in the lattice
is indeed important for ionic crystals.

Finally the dimer to monomer ratios for K, and KI
at a given energy, calculated with (3.1.9) and (3.1.6)
are found to be an order of magnitude higher than the
experimental results. In view of the statistics of occur-
rence of the various surface configurations of the
particles to be sputtered, this seems to be a reasonable
result.

5 CONCLUSION

The high energy results of section 4 indicate clearly
that the present theory indeed explains the energy
distributions of clusters. This means that clusters are
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formed by recombination of independently sputtered

atoms, and that their energy distributions are determined

by the £~" power laws of the monomer distributions.
Moreover, from the Kl results it can be concluded that
for ionic crystals various configurations of the atoms
on the surface contribute to dimer formation. On the
other hand, at the lowest energies there are deviations
between theory and experiment, since the value of £}
in the dimer formula has to be chosen considerably
lower than expected from the monomer distribution
to get a fit with the experimental curves. This may
indicate that the present theory under assumption 35

is a rather crude approximation. In fact, this assump-
tion states that the binding energy acts only upon the
individual atoms of the cluster, thus decreasing both
its initial center of mass energy and the relative motion
in the cluster. It is likely however, that the binding
energy plays a more complicated role in cluster forma-
tion. In many cases the atoms of the cluster originally
have been quite close together on the surface, so that
the sputtered aggregate closely resembles a molecule.
Therefore it can be expected that part of the binding
energy acts on the whole cluster, and does not influence
the relative motion of the atoms in the cluster. Such
refinements of the theory however will never change

the asymptotic behaviour of the energy distribution at
the high energy limit, since the binding energy can

then always be neglected with respect to the kinetic
energy of the cluster. The asymptotic behaviour remains
therefore the same as in section (3.2), being only
determined by the behaviour of the monomer distri-
butions at high energy.

REFERENCES

1. G.P. Konnen, A. Tip, and A. E. de Vries, Rad. Effects,

21, 269 (1974).

M. W. Thompson, Phil. Mag. 18, 377 (1968).

J. Politick and J. Kistemaker, Rad. Effects, 2,129 (1969).

G. Staudenmaier, Rad. Effects, 13, 87 (1972).

P. Sigmund, Phys. Rev. 184, 383 (1969).

G. Staudenmaier, Rad. Effects, 18, 181 (1973).

A. P. M. Baede, W. F. Jungmann and J. Los, Physica 54,

459 (1971).

G. P. Konnen, J. Grosser, A. Haring, A. E. de Vries and

J. Kistemaker, Rad. Effects, 21, 171 (1974).

Handbook of Chemistry and Physics, 1972-173.

International Tables of Selected Constants, Part 17,

Spectroscopic Data Relative to Diatomic Molecules,

Ed. B. Rosen, Pergamon Press, New York 1970.

11. A. M. C. Moutinho, J. A. Aten and J. Los, Physica 54,
471 (1971).

NOUVE WD

oY x



