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The radiance distribution of light scattered by randomly oriented ice crystals differs fundamentally from
the radiance distribution of light scattered by spherical raindrops or by preferentially oriented ice crys-
tals. A formalism for light scattering by randomly oriented crystals is given and applied to four examples,
among them the circular 22° halo and the antisolar halospot, the latter being the glory analogue for ice
crystals. A long-standing misconception about the nature of the radiance distribution of circular halos is
quantified and discussed. © 2015 Optical Society of America
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1. Introduction: Halos and Rainbows

A powerful approach to analyze special features in
scattering patterns is to factorize the geometrical-
optics differential cross section dσ∕dΩ (often denoted
in papers about halos or rainbows by I and then
loosely called the “radiance” [1]) into a factor D that
takes the scattering geometry into account and is
called by various authors [2,3] the “divergence” [4],
and a transmission factor T ≤ 1 that describes the
loss in intensity during the interaction with the par-
ticle [2,3,5,6]. Assuming cylindrical symmetry in the
scattering geometry,

I ≡
dσ
dΩ

� T�b�D ≡ T�b� b
sin�θ�

����dbdθ
����; (1)

(see Fig. 1) in which θ is the scattering angle, b is the
impact parameter (i.e., the distance of the incoming
light ray from the symmetry axis), and θ�b� is called
the deflection function.

T depends on the light path via the scatterer (often
a sphere is considered) and is a function of the
Fresnel coefficients for refraction and reflection.

Attention is usually focused on situations in Eq. (1)
where D�θ� possesses a singularity: to axial focusing
(glory scattering) for θ � 0, 180°, and to θ0�b� � 0
(causing caustics; see [7–12] for examples in particle
scattering). The divergence D�θ� provides a fair rep-
resentation of I�θ� near such singularities as long as
T depends only weakly on b in the interval of inter-
est, which is usually the case (but see [13]).

The ordinary rainbow emerges when θ0�b� � 0 and
θ00�b� ≠ 0. Then the deflection function can be ex-
panded as

θ�b� � θr � C�b − br�2; (2)

where θr and br refer to the values at the rainbow
angle and where C is constant. With Eq. (1), this
yields for the geometric-optics radiance distribution
of the rainbow on its bright side (which we assume
here to be at θ > θr) the well-known inverse
square-root distribution:

Irainbow�θ� ∝ �θ − θr�−1
2: (3)

For refraction halos, which emerge from the passage
of light through an ice prism, often a formula similar
to Eq. (1) is applied (see, e.g., [5]):
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Ihalo�θ� � T�i�
���� didθ

����; (4)

where i is the angle of incidence at the prism and
where the prism axis is implicitly assumed to have
a fixed angle with the Sun. The parameter T depends
on the Fresnel factors and on geometrical shielding
of the light rays by the faces of the crystals. On rotat-
ing a prism about its axis, the deflection function θ�i�
reaches a minimum value θmin at imin. Using an ex-
pansion like Eq. (2) and noting that the dependency
of T on i can be in first order neglected, one finds for
the halo radiance distribution near θmin

Ihalo�θ� ∝ �θ − θmin�−1
2; (5)

which is the same as the inverse square-root formula
that describes the geometric-optics radiance distri-
bution of rainbows Eq. (3).

Equations (4) and (5) apply well to parhelia and to
the caustics of two-dimensional [14] refraction halos
(called by Berry and Klein [15] “fake caustics” to dis-
tinguish them from the “genuine” ones like those in
drops), among them the upper and lower tangent
arcs to the 22° halo and the infra- and supralateral
arcs to the 46° halo. However, as hinted at qualita-
tively by Tricker in 1970 [16] in a discussion about
halo colors, stated more explicitly by Tape in 1980
[14] in his paper about halo caustics and derived
quantitatively by me [17] in 1983 during an analysis
of radiance distribution of the circular 22° halo,
Eqs. (4) and (5) fail to describe scattering by ran-
domly oriented crystals. The reason is that D differs
fundamentally from the cases described above, which
leads to radiance distributions that differ fundamen-
tally from those encountered in light scattering by
drops or by preferentially oriented crystals—a fact
that has been often overlooked in studies about halos.

In this paper, I present a general formalism for
light scattering by randomly oriented crystals. The
purpose is conceptual for obtaining a better under-
standing of halos, and in this way to complement
the computer approach to halos. The formalism is
worked out for geometric optics. Special features of
the radiance distributions of four halos arising from
scattering of light by randomly oriented crystals are
explicitly calculated and discussed. With the inclu-
sion of an analysis of the parhelion radiance, empha-
sis is given to the difference in the radiance

distribution of circular halos if calculated with the
correct formalism instead of being obtained from
an often-applied misconstrued model of formation.

2. Divergence D and Halo Radiance I for Randomly
Oriented Crystals

The concept of divergence for halos differs from that
for rainbows since the impact parameter is no longer
relevant. For the derivation of the divergence for
randomly oriented crystals Dran, we introduce the
deflection sphere of a light-scattering crystal. Its con-
struction is as follows. First, the crystal is fixed in a
Cartesian frame with coordinates uvw. Around the
center a unit sphere S2 is defined. The spherical co-
ordinates of a point s on the sphere are denoted by
�ϑ;φ�. Each point s on the sphere represents a pos-
sible position of the Sun, as seen in the crystal frame.

Now we choose a light path from Sun to observer
via the crystal—for instance via a simple external re-
flection at a crystal face or via refraction through a
60° wedge of two prism faces of a hexagonal ice crys-
tal. For this prescribed path, we calculate for any s
the scattering angle θ0�s�. Then we vary s over the
sphere and draw a contour map of points with equal
θ0. This is the deflection sphere of the crystal—or,
more precisely, of the chosen light path though the
crystal. Figure 2 shows the deflection sphere for
external reflection.

Random orientation is assumed. Hence all surface
elements dω on the deflection sphere have the same
probability to momentarily contain the Sun direc-
tion. From this, it follows that the probability that
the crystal is in an orientation for scattering light

Fig. 1. After the interaction with a particle, light rays that had
entered in an area 2πbdb are scattered into a solid angle
2π sin�θ�dθ. The divergence D is the ratio of these two terms.

Fig. 2. Deflection sphere for external reflection at the top face of
an ice crystal. The crystal is fixed in a uvw Cartesian frame. Any
point s on the sphere represents a possible position of the Sun as
seen from the crystal; the positivew axis is chosen here to coincide
with face normal of the reflecting face. The vector gives a momen-
tary realization of the position of the true Sun by the randomly
oriented crystal; the colatitude of that realization is ϑ. To each
point s on the upper hemisphere corresponds a scattering angle
θ, which is the angle between the Sun and the halo point (here
the negative of the reflected ray). The contours are isolines of equal
scattering angle.
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in a direction between angle θ and θ� dθ is the
surface area on the deflection sphere between these
contours, divided by 4π. This light is scattered into a
solid angle 2π sin�θ�dθ whose probability is
(2π sin�θ�dθ�∕4π. The divergence at θ is the ratio of
these probabilities.

Denoting the area on the deflection sphere where
the scattering angle is less or equal than a given
value θ0 by A�θ0�,

A�θ0� � area of fs ∈ S2 : θ ≤ θ0g (6)

gives for the divergence

Dran�θ� �
A�θ� dθ� − A�θ�

2π sin�θ�dθ � A0�θ�
2π sin�θ� : (7)

The radiance I of a halo due to a prescribed light path
though the crystal is proportional to the surface
area of the entry face of the crystal and the
divergence Dran divided by 4π. The proportionality
factor is denoted by T�θ�. T�θ� is a fraction with a
value between 0 and 1. T�θ� accounts for the losses
of intensity of the light rays at their passage through
the crystal during the reflections/refractions at the
crystal faces; it accounts for losses due to shielding
of the light rays caused by the geometry of the crys-
tals; and it accounts for the projection of the surface
area of the entry face of the crystal for inclined in-
coming rays. These factors vary along the θ contour,
and T is therefore an integral along the contour.

Then, the relation between the radiance I of a halo
due to a prescribed light path though the crystal and
Dran is

I�θ� ≡ dσ
dΩ

� a2T�θ�Dran�θ�; (8)

in which a2 is the surface area of the entry face of the
crystal divided by 4π sr.

3. Four Applications

A. Simple Case: External Reflection at a Crystal Face

Figure 2 gives the deflection sphere for external re-
flection at a preselected crystal face. The face is put
here in the equatorial (w � 0) plane of the sphere.
Hence, colatitude ϑ of point s on the sphere corre-
sponds to the angle of incidence i. The contours
θ�ϑ;φ� on the sphere follow straightforwardly from
the law of reflection,

θ � 180° − 2i ≡ 180° − 2ϑ; (9)

so that they consist of equidistant concentric circles
with half the spacing of the colatitude circles ϑ.
As the length of a contour of value ϑ is 2π sin ϑ �
2π cos�12 θ�, one has

dA�θ� � 2π cos�ϑ�dϑ � −π cos
�
1
2
θ

�
dθ; (10)

and with Eq. (7)

Dran � cos
�
1
2 θ

�
2 sin�θ� �

1

4 sin
�
1
2 θ

� : (11)

Assuming for the moment reflectivity 1, then T
equals the projection factor cos�i� for inclined inci-
dence on the reflecting face. As i � ϑ,

T�θ� � cos�ϑ� � sin
�
1
2
θ

�
; (12)

and thus

I�θ� � a2T�θ�Dran�θ� �
1
4
a2 � constant; (13)

indicating that the radiance I is uniformly distrib-
uted all over the celestial sphere. For reflection at
(dielectric) surfaces like ice, the distribution is
according to the Fresnel coefficients of reflection.

B. Double-Mirror Reflection: The Antisolar Halospot

Figure 3 shows the deflection sphere for reflection at
two perpendicular mirrors. With the two mirrors in
the u � 0 and v � 0 planes, the axis of the combined
system coincides with the w axis of the sphere. The
net effect of the reflections at the two mirrors is a
180° rotation about the w axis. Contours appear at
one quadrant of the sphere, but because of the sym-
metry of the contours, we need to evaluate only the
octant with �u; v; w� > �0; 0; 0� and then to multiply
the answer by two. In that octant, the colatitude ϑ
of s is related to the scattering angle θ by

Fig. 3. Deflection sphere for reflection at two mutual
perpendicular mirrors. The axis of the combined system is the
w axis of the Cartesian uvw frame in which the mirrors are fixed;
the mirrors are put in the u � 0 and v � 0 planes. Contours exist
on only one quadrant of the sphere.
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θ � 2ϑ; (14)

so that the contours are segments of the equidistant
circles like those depicted in Fig. 2 but now with a
reverse counting. The length of a contour of value
ϑ is 1

2 π sin ϑ � 1
2 π sin�12 θ� so that

dA�θ� � 1
2
π sin�ϑ�dϑ � 1

4
π sin

�
1
2
θ

�
dθ; (15)

and with Eq. (7)

Dran � sin
�
1
2 θ

�
8 sin�θ� : (16)

The projected area of the system scales as before
(Eq. (12) with sin�ϑ� � sin�12 θ�. Putting the reflectiv-
ity of the system at unity and T ∝ sin�12 θ�, we find for
the radiance I

I�θ� � a2T�θ�Dran�θ� ∝
sin2

�
1
2 θ

�
sin�θ� ; (17)

which is zero for θ → 0 but infinity for θ → 180°. This
singularity arises because the term 1∕sin�θ� in Dran
Eq. (7) is not counterbalanced by the geometrical
factors in T so that axial focusing occurs. As in
classical glory scattering by spheres Eq. (1), the
radiance distribution near θ � 180° is given by

I�θ → 180°� ∝ 1
sin�θ� ≈

1
180° − θ

: (18)

Randomly oriented hexagonal ice crystals are
capable of producing this glory analogue via light
path 1321 (Tape’s [18] notation), which is the path
that generates in plate-oriented crystals the subpar-
helic circle. The resulting halo, called the antisolar
halospot, manifests itself as an often somewhat

irregular spot of enhanced radiance centered at
the antisolar point [19].

C. Circular Refraction Halos

1. Radiance near the Halo Angle
Figure 4 shows the contours on the deflection sphere
for refraction by a prism with axis parallel with the
w axis and the entry face in the u � 0 plane. The con-
tours are drawn schematically; see [20] for their pre-
cise shapes. The right panel of Fig. 4 details the
geometry: the colatitude of point s with respect to
the u axis on the sphere corresponds to the angle
of incidence i; thew � 0 plane corresponds to the nor-
mal plane of the refracting prism. The inclination of
the incoming ray with respect to the normal plane h
and the projected angle of incidence ip are the ordi-
nary latitude and azimuth, respectively, of s.

The angle of incidence resulting in scattering at
the halo scattering angle θhalo is in the normal plane
and denoted by ihalo. With the Bravais index of refrac-
tion, the first terms of the Taylor expansion of the
prism deviation formulas for skew incidence for
θ → θhalo results in the deflection function θ�i; h� near
θhalo [17]:

θ − θhalo ≈ c1�ip − ihalo�2 � c2h2; (19)

with c1 and c2 constants. For the 22° ice-crystal halo,
c1 � 0.482 rad−1 and c2 � 0.169 rad−1; for the 46°
halo, c1 � 2.05 rad−1 and c2 � 0.604 rad−1.

Equation (19) defines θ�ϑ;φ� as elliptical contours
on the deflection sphere. The ellipse area is a first-
order approximation at θhalo of the true area A�θ�
within the θ contour:

lim
θ→θ�halo

1
θ − θhalo

�
A�θ� − π�θ − θhalo����������

c1c2
p

�
� 0: (20)

Then

Fig. 4. Left: Deflection sphere for refraction by an (ice crystal) prism. The prism axis is parallel with thew axis of the Cartesian uvw frame
in which the crystal is fixed. The entry face (light gray) is put in the u � 0 plane. The contours are drawn schematically; exact shapes are
depicted in Figs. 9 and 13 of [20]. θhalo is the halo angle. Right: Geometry of the problem, defining i, ip, and h for a point s representing the
Sun as seen in the uvw crystal frame. The w � 0 plane (gray) is the normal plane of the wedge.
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A0��θhalo� � lim
θ→θ�halo

A�θ� − A�θhalo�
θ − θhalo

� lim
θ→θ�halo

π���������
c1c2

p

� π���������
c1c2

p : (21)

Since Dran�θ� � A0�θ�∕�2π sin�θ��, the right- and left-
hand divergences of θ are

D�
ran�θhalo� �

1
2

���������
c1c2

p
sin�θhalo�

; (22a)

D−

ran�θhalo� � 0. (22b)

Then the halo radiance I�θ� at the halo angle θhalo is
given by a jump:

I��θhalo� �
a2T�θhalo�

2
���������
c1c2

p
sin�θhalo�

; (23a)

I−�θhalo� � 0. (23b)

The result [Eqs. (23)] for the radiance distribution of
circular refraction halos—a jump discontinuity at
θhalo instead of an infinite spike—was loosely ob-
tained in 1983 [17] and 11 years later reproduced
by Berry [21].

Figure 5 shows Dran, as calculated for the 22° ice
crystal halo and a point Sun. Near the jump at
θhalo,Dran decreases by 9%/degree. Of this, 4%/degree
is caused by the factor 1∕ sin�θ� term in Dran; the re-
maining 5%/degree stems from the numerator of
Dran [Eq. (7)].

Figure 6 shows I�θ� for the circular 22° halo as
calculated by a full ray-tracing program for equidi-
mensional ice crystals and a point Sun (same run
as Fig. 2 of [22]). Near θhalo the simulation decreases
by 25%/degree instead of by 9%/degree in Fig. 5. The

excess decrease rate of 16%/degree compared to
Fig. 5 can be attributed to shielding effects in the
crystals and hence to the θ dependency of T.

2. Parhelia: Comparison of the Naive and
Realistic Approaches to the Circular Halo
In what I call the “naive approach,” the circular halo
is sometimes mistakenly constructed by starting
from a parhelion with the Sun on the horizon and
then rotating it about the Sun. The radiance distri-
bution of the resulting circular feature, which corre-
sponds exactly to that of the circumscribed halo for
Sun in zenith, is then mistakenly conflated with
the radiance distribution of the circular halo gener-
ated by randomly oriented crystals.

The radiance distribution Inaive of this feature is
given by

Inaive�θ� ∝
Iparh�θ�
sin�θ� � a2T�θ�Dparh

sin�θ� ; (24)

where Iparh and Dparh are the radiance and the diver-
gence for a parhelion at solar elevation zero and
where the factor 1∕ sin�θ� accounts for the increase
in solid angle with θ.

Dparh at θhalo can be evaluated with the deflection
sphere (Fig. 4). The realizable positions of the point s
are now restricted to the equator of the deflection
sphere (great circle at w � 0�. Denoting the w � 0
great circle on the deflection sphere by S1, we have
for the one-dimensional analogues of Eqs. (6,7)

l�θ0� � length of fs ∈ S1; θ ≤ θ0g; (25)

θhalo

2

3

4

1

10o 30o 40o

θ

Dran

θMAX

Fig. 5. DivergenceDran for the 22° ice crystal halo as a function of
scattering angle θ. The Sun is point shaped. The dimensionless
Dran is nonzero between the halo scattering angle θhalo (corre-
sponding to θ � 21.8°) and θMAX (50.1°, the so-called maximum
deviation angle). This curve is calculated using the exact areas
A�θ� [Eq. (6)] rather than any approximations. The transition to
nonzero values at θhalo occurs with a jump. Its values D��θhalo�
and D−�θhalo� agree with Eq. (22).

Fig. 6. Full ray-tracing simulation of the radiance as a function of
scattering angle θ of a 22° circular halo generated by scattering of
light from a point-shaped Sun by equidimensional crystals. The
counting intervals are 0.05° wide; the unit of radiance is counts/
0.05°.
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Dparh � l�θ� dθ� − l�θ�
dθ

� l0�θ�: (26)

The approximate deflection function for the parhe-
lion is

θ − θhalo ≈ c1�i − ihalo�2: (27)

The parhelion analogue of Eq. (20) is

lim
θ→θ�halo

1
θ − θhalo

�
l�θ� − 2

������������������
θ − θhalo

p
�����
c1

p
�
� 0: (28)

And, in contrast with Eq. (21),

l0��θhalo� � lim
θ→θ�halo

l�θ� − l�θhalo�
θ − θhalo

� lim
θ→θ�halo

π�����
c1

p ������������������
θ − θhalo

p

� ∞:

With Eq. (26), the right- and left-hand divergences of
θ are

D�
parh�θhalo� � ∞; (29a)

D−

parh�θhalo� � 0. (29b)

Then the parhelion radiance I�θ� at the halo angle
has an infinite spike:

I�parh�θhalo� � ∞; (30a)

I−parh�θhalo� � 0; (30b)

implying that the radiance of the circular halo in the
naive (and misconstrued) approach Inaive�θ� also has
an infinite spike at the halo angle rather than a jump
discontinuity.

Figure 7 shows Dparh, as calculated for the 22° ice
crystal parhelion emerging from perfectly horizontal
plate crystals and a point-shaped Sun at solar eleva-
tion zero. The comparison with Fig. 5 highlights the
difference between the realistic and the naive ap-
proaches to the circular halo: Inaive�θ� gives an infin-
ite spike at θhalo instead of a jump and predicts near
θhalo a stronger concentration of light.

By a comparison of a full ray-tracing simulation of
the circular 22° halo with that of the circumscribed
halo at Sun elevation 90°, Fig. 8 demonstrate the
fundamental different nature of the radiance distri-
bution of a circular halo according to the realistic
approach and the naive approach (see, for a similar
comparison, Figs. 5 and 6 of [23]).

θhalo

20

10

10o 30o 40o 50o

1
θ

Dparh

θMAX

Fig. 7. Divergence Dparh for the 22° parhelion emerging from per-
fectly horizontal plate ice crystals as a function of scattering
angle θ. The Sun is point shaped; solar elevation is zero. Dparh
is nonzero between the halo scattering angle θhalo (corresponding
to θ � 21.8°) and θMAX (here 43.5°). This curve is calculated using
the exact lengths l�θ� [Eq. (25)] rather than any approximations.
The curve exhibits at θhalo an infinite spike; at θMAX the curve
jumps from 1 to 0. Note that for the entire interval [θhalo, θMAX]
the values of D are higher than those for the circular halo (Fig. 5).

Fig. 8. Left: Ray-tracing simulation of the circular 22° halo (all crystals in random orientation). Right: Circumscribed halo for solar
elevation 90° (all crystals in column orientation; dispersion in orientation C-axis � 0.1°). The crystal density is the same for both sim-
ulations. The aspect ratio c∕a of the crystals is taken 2; solar disc smearing is taken into account. The radiance distribution of the circular
22° halo is smoother, and the radiance at its inner boundary is five times less than for the circumscribed halo. The right-hand panel also
corresponds to a simulation of the circular 22° halo according to the naive (and misconstrued) approach.
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D. Do Rainbow/Parhelia-Analogue Halos Ever Occur from
Random Crystal Orientation?

A situation can be constructed in which scattering by
randomly oriented crystals produces caustics similar
to those that occur for parhelia and the tangent arcs
to the 22° halo, that is, where the radiance has an
infinite spike at θhalo. This would happen, among
other examples, when the deflection function of such
a halo was given by

θ − θhalo � �c1�ip − ihalo�2 � c2h2�2 (31)

instead of by Eq. (19). In the real world of halos, such
a situation never occurs.

4. Discussion and Conclusion

There is a persistent tradition to assign to refraction
halos due to random orientation the same radiance
distribution as the one valid for rainbows, for parhe-
lia, and for refraction halos due to singly oriented
crystals. This custom starts in the mid-19th century
when Bravais argued that the circular 22° halo
should exhibit a strong (rainbow-like) accumulation
of light at its inner boundary [24] and runs via au-
thors like Garbett [25,26], Ekama [27], Pernter and
Exner [28], Meyer [29], Visser [30], myself [31],
Greenler [32], Lynch and Livingston [33], and
Bohren and Clothiaux [5] into the present century.
As shown in the present paper, the application of the
halo formulas valid for preferential orientation to
halos from randomly oriented crystals is not correct.
The additional degree(s) of freedom in random orien-
tation leads to a fundamental other formalism for the
divergenceD and hence to a different radiance distri-
bution. A comparison of the two simulations shown
in Fig. 8 highlights the nature of the difference.

From a historical standpoint it is interesting that
a number of authors, apparently unaware of the
difference of the radiance distributions between a
parhelion and the circular 22° halo, did accidentally
arrive at a radiance distribution of the circular 22°
halo that is not too far from the truth by assuming
that its first approximation is a step function modi-
fied with the geometric effects occurring in a regular
hexagonal crystal. In this way, some researchers, e.g.,
Ekama [27], Visser [30], and Lynch and Schwartz
[34], still used a more or less realistic radiance model
in their analyses. However, the latter does not hold
for Bravais [24], who applied this modified step func-
tion to parhelia.

The calculations presented in this paper, including
those resulting in Figs. 6 and 7, are obtained under
the assumption of ideal conditions: a point-shaped
Sun and, in the case of the parhelion, perfectly hori-
zontal plate crystals. Solar disc smearing softens the
singularities and modifies the infinite parhelion
spike as well as the infinite antisolar–halospot singu-
larity into a physically more realistic finite maxi-
mum. Apart from that, the introduction of some
randomness in the orientation of plate-oriented

crystals suffices to change the infinite parhelion
spike into a finite maximum [17,22].

Rather than being tailored to the description of one
specific halo [17,19,21], the present formalism pro-
vides a general framework for the description of
any halo due to randomly oriented crystals. With the
formalism, the antisolar halospot emerges in a
natural way as the exact ice-crystal analogue of the
ray-optics glory from backscattering by spheres.
Scattering of light by randomly oriented crystals
results less often in distinct halo structures than
scattering by preferentially oriented crystals; the
formalism provides an aid to diagnose the properties
of any feature that arises from light scattering by
randomly oriented crystals.

As in our previous papers dealing with a concep-
tual approach to halos [20,35], the formalism out-
lined in the present paper is not meant to compete
with the computational Monte Carlo ray-tracing
approach for simulating halos. Rather, the present
paper is meant to complement the computational
approach in order to get a better understanding of
halos. In this particular case, however, it is also
meant to correct a wrong concept that has been ap-
plied for ages to the calculation of radiance distribu-
tion of circular halos due to light scattering by
randomly oriented crystals.

Walt Tape made important corrections to the par-
helion and circular halo sections (Section 3.C) and
provided the divergence plots in Figs. 5 and 7. David
Maxwell (Department of Mathematical Sciences,
University of Alaska, Fairbanks) proved a general re-
sult that includes Eq. (20) as a special case. The halo
simulations (Fig. 8) are generated with the HaloSim
program by L. Cowley and M. Schroeder [36].
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