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Using ray theory, the Möbius shift of the �p − 1�-order rainbow angle for a particle having an elliptical cross section
is obtained to first order in the ellipticity as a function of the tilt of the ellipse with respect to the propagation
direction of the incoming rays. The result is then adapted to the geometry of scattering of light rays from the
sun by a falling water drop as a function of sun height angle. The variation in the angular spacing between
the supernumeraries is determined as a function of location along the rainbow arc, the conditions under which
the rainbow angle is insensitive to drop flattening were determined, and the dependence of the Möbius shift
on the drop refractive index is shown for rainbows up to fourth order �p � 5�. © 2017 Optical Society of America

OCIS codes: (010.1290) Atmospheric optics; (080.0080) Geometric optics; (290.0290) Scattering; (290.1310) Atmospheric scattering.

https://doi.org/10.1364/AO.56.000G88

1. INTRODUCTION

Although credible reports of naked-eye observations of the
third-order rainbow are rare due to its poor signal-to-
background ratio [1], the visibility of naturally occurring high-
order (p≥4) rainbows has recently generated great interest due
to the use of image processing techniques on photographs in
which high-order rainbows were recorded but which were
too dim to be discerned by the naked eye. In particular, im-
age-processed photographic observations of the third-order
[2], fourth-order [3], fifth-order [4], and possibly the sev-
enth-order [5] natural rainbows have recently been published
and analyzed [6]. The poor signal-to-background ratio of high-
order rainbows has been compensated for in controlled labo-
ratory experiments, where high-order rainbows [7–9] and
rainbow glare spots [10] of a single pendant water droplet have
been observed using a focused laser beam and a sensitive de-
tector array. The incident laser beam is focused on the horizon-
tal circular cross section of the pendant droplet near its edge, so
that the ray path remains in the horizontal plane where the
droplet cross section is circular. In addition, the focusing chan-
nels most of the laser power into rays in the vicinity of the
Descartes ray. In the theoretical analysis of these laboratory ex-
periments, the predicted rainbow deflection angle is obtained
by adding the wave-theory-based Airy shift [11] to the
ray-theory-based Descartes rainbow angle.

For natural rainbows, the shape of falling water drops is flat-
tened by the combination of air resistance and surface tension
forces [12–14]. Thus, light rays contributing to the top of the
rainbow arc traverse the noncircular vertical cross section of the

drop. The theoretical analysis of these observations of the natu-
ral rainbow includes an additional ray-theory-based shift of the
rainbow angle, known as the Möbius shift. The shape of falling
water drops whose volume-equivalent radius r is less than about
0.5 mm [12] can be accurately modeled by an oblate spheroid
having a circular horizontal cross section and an elliptical ver-
tical cross section. The shift of the rainbow deflection angle to
first order in the ellipticity, called the first-order Möbius
approximation to the ray theory Möbius shift, was determined
for the first-order rainbow in [15,16] (see also [17]) and for the
second-order rainbow in [18]. A short historical account of the
modeling and observation of this shift before the time of
Möbius is given in Appendix A. In spite of the large range
of drop sizes in a typical rain shower, the supernumerary inter-
ference pattern accompanying the rainbow becomes observable
when the opposing Airy and Möbius shifts produce a relative
minimum of the supernumerary deflection angle as a function
r, and there are plentiful drops in the rain shower of this
size [17,18].

Light rays incident on a distorted water drop in other than
the horizontal and vertical planes change their plane of propa-
gation at every interaction with the drop surface. This causes
their analysis to be considerably more complicated [19–21].
A simplifying approximation to the ray path inside the drop
for a small deviation from sphericity is considered in
Section 3.B. When the shape of a falling water drop can be
accurately modeled by an oblate spheroid and a plane wave
comprised of rays in all planes of incidence illuminates it in
the side-on orientation, the first-order rainbow becomes part
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of the more elaborate hyperbolic umbilic optical caustic
[22–26]. As the water drop’s deviation from circularity becomes
more pronounced, the first-order rainbow scattering angle in
the horizontal plane remains stationary while a transverse cusp
caustic caused by the interference of skew rays slowly forms and
moves toward it. Simultaneously, the first-order rainbow scat-
tering angle in the vertical plane migrates toward the back-
scattering direction. This migration is the Möbius shift.
This shift has been computed exactly in both wave theory
[27] and ray theory [28] and has been compared with the
first-order Möbius approximation [28,29].

In light of the recent interest in natural high-order rainbows,
the purpose of this study is to determine the ray-theory-based
first-order Möbius approximation for the general �p − 1�-order
rainbow for a water drop having an elliptical cross section in the
vertical plane. A preliminary version of these results was re-
ported previously [30] and was recently quoted in [28]. The
validity of the first-order Möbius approximation depends on
the interplay of two competing conditions. As a result, the fall-
ing water drops cannot be too small nor can they be too large.
Specifically, the ray model of light scattering does not become
quantitatively valid until the volume-equivalent radius r is
much larger than the wavelength λ of the incident light.
Experience has shown that 2πr∕λ must be of the order of at
least a few thousand [31–33]. For λ � 0.55 μm at the center
of the visible spectrum, this criterion is roughly r > 0.2 mm.
But as was mentioned above, the shape of a falling water drop is
accurately modeled by an oblate spheroid for roughly r <
0.5 mm [12]. For radii larger than this, the bottom surface
of the drop becomes increasingly flattened, and a two-ellipse
cross section model of the shape in the vertical plane [34–
36] provides a better approximation. Both ray theory and
the spheroidal model of the falling water drop have been found
to be valid for recent observations of the natural �p − 1�-order
rainbow. For example, in [17] the first two supernumeraries of
the first-order rainbow were determined to be due to individual
drops in the raindrop size distribution in the range 0.2 mm ≤
r ≤ 0.3 mm, and the drop sizes giving rise to the photographi-
cally observed high-order rainbows described in [4] were deter-
mined to be 0.26 mm ≤ r ≤ 0.53 mm.

The results of our study are presented in two papers: (i) the
current Part I and (ii) Part II [37]. The body of the current
paper is organized as follows. In Section 2, the first-order
Möbius approximation to the ray-theory Möbius shift of the
�p − 1�-order rainbow is obtained for an elliptical cross section
particle as a function of the orientation of the ellipse with re-
spect to the direction of the incident rays. In Section 3, the
ellipse orientation is referenced to the sun height angle in order
to cast the result in terms of quantities standardly used in
atmospheric observations, the formulas for the first-order
and second-order rainbows are checked with those in earlier
studies [18], and the formulas for high-order rainbows are given
for tilted as well as for vertical scattering planes. For those who
wish to have easy reference to the formulas for the first-order
approximation to the Möbius shift for high-order rainbows in
the vertical plane that were derived in detail in Sections 2 and 3,
the appropriate formulas are tabulated in Appendix C.
In Section 4, we study the dependence of the first-order

Möbius approximation on the drop refractive index and deter-
mine the drop indices for which the first-order Möbius approxi-
mation vanishes, thus making the rainbow angle insensitive to
drop flattening. In Section 5, we recount our major results and
conclusions of this paper. Finally, in Part II of this study [37],
the formulas of Airy theory are modified so as to include the
Möbius shift, the variation of the angular spacing of the super-
numeraries is determined as a function of the sun height angle,
and conclusions about the appearance of supernumeraries of
high-order rainbows in natural showers are drawn.

2. RAINBOWS FROM FLATTENED DROPS

A. Geometry of the Elliptical Cross Section
Consider the ellipse of Fig. 1 having its semi-major axis b along
the y 0 axis and its semi-minor axis a along the x 0 axis:

x 02∕a2 � y 02∕b2 � 1: (1)

For use in this Section, we define its ellipticity as

ϵ ≡ �b∕a� − 1; (2)

and we consider the case where b > a and ϵ > 0. The ellipse and
its x 0y 0 coordinate system are rotated by an angle ξ with respect
to fixed x and y axes as in Fig. 2. A counterclockwise rotation is
positive and a clockwise rotation is negative. We define the quan-
tities A, E , and ζ describing the rotated ellipse by

A2 ≡ b2 sin2�ξ� � a2 cos2�ξ�; (3a)

E cos�ζ� ≡ ab∕A2; (3b)

E sin�ζ� ≡ �b2 − a2� sin�ξ� cos�ξ�∕A2; (3c)

and we hereafter make use of the scaled coordinates

X ≡ x∕A; (4a)

Y ≡ y∕A: (4b)

The upper (+) and lower (−) surfaces of the rotated ellipse
are given by

Y � −E sin�ζ�X � E cos�ζ��1 − X 2�1∕2: (5)

Fig. 1. Ellipse having semi-major axis b and semi-minor axis a.
The coordinate frame of the ellipse is �x 0; y 0�.
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In order to clarify the physical meaning of A, E , and ζ, we
note in Fig. 2 that (i) when X � 0, the Y axis intersects the top
and bottom of the ellipse at Y � �E cos�ζ�, (ii) the lines tan-
gent to the ellipse are vertical when X � 1, Y � −E sin�ζ� and
X � −1, Y � E sin�ζ�, (iii) the line tangent to the upper sur-
face is horizontal when X � − sin�ζ�, Y � E , and the line tan-
gent to the lower surface is horizontal when X � sin�ζ�,
Y � −E . Thus, E and ζ describe both the degree of noncircu-
larity of the ellipse and its clockwise or counterclockwise diago-
nal tilt. In the limit of a sphere, one has b → a, A → a, E → 1,
and ζ → 0°. Since −1 ≤ X ≤ 1 (or equivalently −A ≤ x ≤ A)
on the ellipse perimeter, one can parameterize X by

X � sin�η�; (6a)

where −π∕2 ≤ η ≤ π∕2 on the upper surface and π∕2 ≤ η ≤
3π∕2 on the lower surface. Equation (5) then simplifies to

Y � E sin�η� ζ� (6b)

on both the upper and lower surfaces of the ellipse.

B. Ray Propagation through the Rotated Ellipse
We consider a family of parallel light rays propagating vertically
downward as in Fig. 3, which strike the upper surface of the
ellipse. The first interaction of a ray with the surface is para-
meterized by the subscript 0. When the point of incidence of an
incoming ray η0 on the perimeter of the ellipse is in the range
−π∕2 < η0 < −ζ, the ray is refracted into the ellipse in the
counterclockwise sense, and when −ζ < η0 < π∕2, the ray is
refracted in the clockwise sense. The angle γ0 of the normal
to the surface at the ray intersection point is measured counter-
clockwise with respect to the positive X axis.

From Eq. (5), one obtains

γ0 � arctanfcos�η0�∕�E sin�η0 � ζ��g; (7)

where the arctangent function is evaluated on its principal
branch when −ζ < η0 < π∕2, which is the situation considered
here. The angle of incidence α0 of the incoming ray is then

α0 � π∕2 − γ0; (8)

and taking the interior of the ellipse to have the refractive index
m, Snell’s law gives the refracted angle β0 as

sin�α0� � m sin�β0�: (9)

The refracted ray makes an angle δ0, measured counterclock-
wise from the positive X axis, giving

δ0 � β0 � γ0: (10)

Using the equation for the slope of this line, the location η1 where
the refracted ray next strikes the ellipse on the lower surface is

η1 � 2 arctanf−�tan�δ0�� E sin�ζ��∕�E cos�ζ��g − η0 � 2N 1π;

(11)

whereN 1 � 1 form � 1.333, small ellipticity, and rays near the
Descartes ray in the sphere limit. The precise meaning of the
parameter N 1 that appears in Eq. (11) will be described in more
detail following Eq. (16a). We are interested in ray paths in this
angular region since the Möbius shift of the �p − 1�-
order rainbow for the elliptical cross section particle is determined
here only for small ellipticity, where the path of the
rainbow ray deviates to only O�ϵ� from the path of the
Descartes ray for a circular cross section particle.

In order to trace the path of the ray from its p − 1 interaction
with the surface of the ellipse at ηp−1 to its p interaction at ηp
(where p � 1 for the initial interaction), one recursively follows
the procedure of Eqs. (7)–(11), taking into account that the ray
internally reflects at all interactions with the surface except for
the last one, where it is refracted back out. For example, for the
refracted ray of Eqs. (10) and (11) and in Fig. 4, the normal to
the ellipse surface at the next interaction γ1, given by

γ1 � arctanfcos�η1�∕�E sin�η1 � ζ��g �M 1π; (12)

is measured counterclockwise with respect to the positive X
axis, where M 1 � 1 for m � 1.333, small ellipticity, and rays

Fig. 2. Geometry of the ellipse of Fig. 1 whose frame �x 0; y 0� is
rotated counterclockwise by the angle ξ with respect to frame
�X ; Y �. See text for the meaning of the other symbols.

Fig. 3. Geometry of an incident ray refracted into the ellipse in the
interval −ζ ≤ η0 ≤ π∕2, in which η0 is the point of incidence at the first
interaction with the surface and η1 is the point of incidence at the first
internal reflection. The angle of incidence at the first interaction is α0; its
angle of refraction is β0. See text for the meaning of the other symbols.
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near the Descartes ray in the sphere limit. The meaning of M 1

will be described in detail following Eq. (16b). The internal
reflection angle β1 is given by

β1 � γ1 − δ0; (13)

and the angle the internally reflected ray makes with the pos-
itive X axis is δ1, where

δ1 � 2γ1 − δ0: (14)

The internally reflected ray strikes the ellipse surface again at

η2 � 2 arctanf−�tan�δ1�� E sin�ζ��∕�E cos�ζ��g − η1� 2N 2π;

(15)

where N 2 � 2 for m � 1.333, small ellipticity, and rays near
the Descartes ray in the sphere limit.

In general, one has

ηp�1 � 2 arctanf−�tan�δp� � E sin�ζ��∕�E cos�ζ��g
− ηp � 2Np�1π (16a)

for 1 ≤ p ≤ 7, whereN 1 � 1,N 2 � N 3 � 2,N 4 � N 5 � 3,
and N 6 � N 7 � N 8 � 4 for m � 1.333, small ellipticity, and
rays near the Descartes ray in the sphere limit. The meaning of
Np�1 is as follows. From Eq. (6a), the angle that a line from the
center of the ellipse to an internal reflection point at its surface
makes with the positive vertical axis is ηp. As a ray makes an
increasing number of internal reflections p, ηp increases as well.
If the refractive index m is small, it takes more internal reflec-
tions for a ray to cycle once around beneath the ellipse surface,
and if m is large, it takes fewer internal reflections for a ray to
complete a cycle. So moving ηp to the left-hand side of
Eq. (16a), the quantity ηp � ηp�1 continues to increase as
the number of internal reflections increases. But the right-hand
side of Eq. (16a) contains an arctangent function which is lim-
ited to the angular interval between −π∕2 and π∕2 on its prin-
cipal branch. So as p increases, additional multiples of 2π,
described by Np�1, must be added to the arctangent to obtain
ηp � ηp�1.

Another angle that describes the ray path and is of interest is

γp � arctanfcos�ηp�∕�E sin�ηp � ζ��g �Mpπ; (16b)

where M 1 � M 2 � 1, M 3 � M 4 � 2, M 5 � M 6 � 3, and
M 7 � M 8 � 4 for m � 1.333, small ellipticity, and rays near
the Descartes ray in the sphere limit. The interpretation of Mp
is similar to that ofNp; the angle γp is geometrically constrained
to be between 0 and π. But in the sphere limit, the arctangent
function in Eq. (16b) reduces to π∕2 − ηp. Again, since ηp con-
tinually increases as a function of p, a multiple of π, described
by Mp, must be added to this in order to get into the range of
γp. Since the number of internal reflections required for a ray to
cycle around beneath the ellipse surface depends both on m and
α0, the quantities Np and Mp depend on m and α0 as well.
Additional angles of interest are

βp � γp − δp−1 � Qpπ; (16c)

δp � 2γp − δp−1 � Qpπ; (16d)

with Qp � 1 for p � 2, 4, 6, Qp � 0 for p � 1, 3, 5, 8, and
Qp � −1 for p � 7.

The deflection angle Θp of the ray making p − 1 internal
reflections before exiting the elliptical cross section particle,
as measured clockwise with respect to the negative Y axis, is

Θp � �α0 − β0� �
Xp−1
q�1

�π − 2βq� � �αp − βp�: (17)

Thus far, the expressions for the ray path through the ellipse
and the deflection angle have been exact. Since we are inter-
ested in the ray path inside an ellipse having a small ellipticity,
we can expand the quantities E , ζ, γp, and ηp�1 to first order in
ϵ, giving

E � 1� ϵ cos�2ξ� �O�ϵ2�; (18a)

ζ � ϵ sin�2ξ� �O�ϵ2�; (18b)

γp � Mpπ � π∕2 − ηp − V pϵ�O�ϵ2�; (18c)

ηp�1 � 2πNp�1 − 2δp − ηp � 2Upϵ�O�ϵ2�; (18d)

where

Up ≡ cos�δp� sin�δp − 2ξ�; (19a)

V p ≡ cos�ηp� sin�ηp � 2ξ�: (19b)

It should be noted that the angles δp and ηp appearing in
Eqs. (19a) and (19b) for Up and V p contain ϵ-dependence
as well. But we will see shortly that the ϵ-dependence in these
terms can be ignored if we are interested only in terms of O�ϵ�
since Up and V p are already multiplied by ϵ in Eqs. (18c)
and (18d).

It proves useful to express all the pertinent angles of the ray
path, ηp, γp, βp, αp, and δp in terms of η0, β0 at the initial in-
teraction, plus correction terms proportional to ϵ. We iterated

Fig. 4. Geometry of the first internal reflection of the ray of Fig. 3.
See Fig. 3 for the meaning of the symbols.
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the procedure of Eqs. (16a)–(16d) for 1 ≤ p ≤ 8 to O�ϵ� and
found that

ηp � pπ � η0 − 2pβ0

� ϵ

"
2pV 0 �

Xp−1
q�1

�4p − 4q�V q �
Xp−1
q�0

�4p − 4q − 2�Uq

#

�O�ϵ2�; (20a)

γp � �−Rp� 1∕2�π − η0� 2β0

− ϵ

"
2pV 0�

Xp−1
q�1

�4p − 4q�V q �V p�
Xp−1
q�0

�4p − 4q − 2�Uq

#

�O�ϵ2�; (20b)

with R0 � R1 � 0, R2 � R3 � 1, R4 � R5 � 2, R6 �
R7 � 3, and R8 � 4 for m � 1.333 and rays near the
Descartes ray in the sphere limit,

βp � β0 − ϵ

"
V 0 �

Xp−1
q�1

2V q � V p �
Xp−1
q�0

2Uq

#
�O�ϵ2�;

(20c)

αp � α0 − ϵ�m cos�β0�∕ cos�α0��

×

"
V 0 �

Xp−1
q�1

2V q � V p �
Xp−1
q�0

2Uq

#
�O�ϵ2�; (20d)

δp � �−Sp� 1∕2�π − η0��2p� 1�β0

− ϵ

"
�2p� 1�V 0�

Xp
q�1

�4p − 4q − 2�V q �
Xp−1
q�0

�4p − 4q�Uq

#

�O�ϵ2�; (20e)

with S0 � S1 � 0, S2 � S3 � 1, S4 � S5 � 2, S6 � 3, and
S7 � S8 � 4 for m � 1.333 and rays near the Descartes ray in
the sphere limit. Substituting Eq. (20c) for βq for 1 ≤ q ≤ p
and Eq. (20d) for αp into Eq. (17), the deflection angle of a
ray making p − 1 internal reflections before exiting the elliptical
cross section particle becomes

Θp � �p − 1�π � 2α0 − 2pβ0 � ϵT p �O�ϵ2�; (21a)

where

T p�α0� � �2p − 1�V 0 �
Xp−1
q�1

�4p − 4q�V q � V p

�
Xp−1
q�0

�4p − 4q − 2�Uq − �m cos�β0�∕ cos�α0��

×

"
V 0 �

Xp−1
q�1

2V q � V p �
Xp−1
q�0

2Uq

#

�O�ϵ2�: (21b)

Recalling Eqs. (19a), (19b), (20a), and (20e), T p can be
thought of as a function of η0, β0, and α0. But since η0 can

be expressed in terms of α0, and β0 is related to α0 by
Snell’s law, it can be considered to be a function of α0 alone.
The condition

dΘp∕dα0 � 0 (22)

for the occurrence of the �p − 1�-order rainbow in ray theory for
the elliptical cross section particle gives the value of αR0 of the
incident rainbow ray. The Taylor series expansion of αR0 in
powers of ϵ is of the general form

αR0 � αD0 � K ϵ�O�ϵ2�; (23)

where the superscript R denotes the angle α0 for the �p − 1�-
order rainbow ray of an elliptical cross section particle, the
superscript D denotes α0 for the �p − 1�-order Descartes rain-
bow ray of a circular cross section particle, and K is a constant
whose value is determined by the details of the derivatives in
Eq. (22). Similarly, the Taylor series expansion of the refracted
angle βR0 in powers of ϵ is of the general form

βR0 � βD0 � Cϵ� O�ϵ2�; (24)

where βD0 is the refracted angle of the Descartes ray of a circular
cross section particle and C is another constant. Snell’s law re-
lates the two constants by

C � K cos�αD0 �∕�m cos�βD0 �� � O�ϵ�: (25)

The rainbow deflection angle is then

ΘR
p � ΘD

p � 2ϵ�K − pC� � ϵT p�αD0 � K ϵ� � O�ϵ2�: (26)

Since we are interested in the Möbius shift of the �p − 1�-order
rainbow to only O�ϵ�, two simplifications of Eq. (26) may be
exploited. (i) The second term on the right-hand side of
Eq. (26) vanishes to O�ϵ� independent of the value of the con-
stant K since the angles of incidence and refraction of the
Descartes ray for a sphere [i.e., O�ϵ0�] are related by

cos�βD0 � � �p∕m� cos�αD0 �; (27)

and (ii) since T p in the third term on the right-hand side is
already multiplied by ϵ, it can be evaluated at αD0 in the sphere
limit [i.e., againO�ϵ0�], bypassing the need to evaluate the con-
stant K . One then has

ΘR
p � ΘD

p � ϵT p�αD0 � � O�ϵ2�: (28)

The simplification of T p�αD0 � of Eq. (21b) is straightforward
but lengthy and is summarized in Appendix B. We obtained

T p��−1�p�18sin�βD0 �cos3�βD0 �Fp�2βD0 �cos�ΘD
p �2ξ��O�ϵ2�

(29)

for 2 ≤ p ≤ 9. For even p, one has

F 2�2βD0 � � 1; (30a)

F 4�2βD0 � � 12 cos2�2βD0 � − 2; (30b)

F 6�2βD0 � � 80 cos4�2βD0 � − 48 cos2�2βD0 � � 3; (30c)

F 8�2βD0 ��448cos6�2βD0 �−480cos4�2βD0 ��120cos2�2βD0 �−4:
(30d)

For odd p, one has
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F 3�2βD0 � � 4 cos�2βD0 �; (30e)

F 5�2βD0 � � 32 cos3�2βD0 � − 12 cos�2βD0 �; (30f)

F 7�2βD0 � � 192 cos5�2βD0 � − 160 cos3�2βD0 � � 24 cos�2βD0 �;
(30g)

F 9�2βD0 � � 1024 cos7�2βD0 � − 1344 cos5�2βD0 �
�480 cos3�2βD0 � − 40 cos�2βD0 �: (30h)

As was done in [30], Eqs. (30a)–(30h) may be written as

F 2M �
XM−1

m�0

�−1�M�m−1�2 cos�2βD0 ��2m

× f�M � m�!∕��M − m − 1�!�2m�!�g; (31a)

F 2M�1 �
XM−1

m�0

�−1�M�m−1�2 cos�2βD0 ��2m�1

× f�M � m� 1�!∕��M − m − 1�!�2m� 1�!�g; (31b)
where Eq. (31a) is used when p is even, and Eq. (31b) is used
when p is odd. The coefficients of Fp in Eqs. (31a) and (31b)
bear a similarity to the coefficients of Chebyshev polynomials of
the second type [38]. Assuming this pattern continues for all
p ≥ 10, Eqs. (28), (29), (31a), and (31b) constitute the first-
order Möbius approximation to the shift of angle of the �p − 1�-
order rainbow of a particle having an elliptical cross section.

3. PROPERTIES AND ZERO POINTS OF THE
MÖBIUS FORMULA FOR OBLATE SPHEROIDS

A. Möbius Formula for the First-Order and Second-
Order Rainbows
We next apply the results of Section 2 to an oblate spheroid
with its symmetry axis vertical, which is the simplest approxi-
mation to the shape of falling drops of any liquid in still air
[12,13]. To achieve this, we rotate the ellipse of Fig. 2 about
the x 0 axis to generate an oblate spheroid whose three principal
radii are b × b × a. As in Möbius’ papers [15,16], we now pa-
rameterize the nonsphericity of the oblate spheroid by

ρ � ��b∕a� − 1�∕��b∕a� � 1�: (32)

If b is only slightly larger than a, one has

ρ ≈ ϵ∕2� O�ϵ2�: (33)

However, in Section 2, the direction of the incoming rays was
held fixed while the orientation of the ellipse was varied. For the
remainder of this paper, the orientation of the falling oblate
spheroidal droplet is held fixed while the direction of the in-
coming sunlight is varied. The direction of the incoming rays
of sunlight with respect to the horizon is described by the sun
height angle h as in Fig. 5. The conditions at sunrise or sunset
when h � 0° correspond in Figs. 2 and 3 to the semi-major axis
being vertical (i.e., ξ � 0°).

First, as a check of the results for the first-order Möbius
approximation given in Section 2, we consider the cases of
the first-order and second-order rainbows for water drops.
The top and bottom of the various order rainbows are defined
as follows. Assume an observer is standing on a bridge just be-
fore sunset during a rain shower, so that h ≈ 0°. The sun illumi-
nates a large number of falling drops both above and below the
observer’s height and in both the direction toward the sun and
away from it. Assume further that the observer sees a full 360°
rainbow for each p. The incident light rays responsible for the
top of the observed arc of the first-order rainbow strike drops
above their horizontal centerline, with the drops being above
the observer’s height and opposite to the sun. As the sun’s
height angle increases, the location on the rainbow arc that
was called the top for h ≈ 0° continues to be called the top.
This situation corresponds to ξ � h in Figs. 2 and 5.
Equations (28), (29), and (30a) for p � 2 then become

ΘR
2 � ΘD

2 − 16ρ sin�βD0 � cos3�βD0 � cos�ΘD
2 � 2h� �O�ρ2�;

(34)

in agreement with Eq. (3) of [18] as well as with Fraser’s
numerical ray-tracing experiments [17,39]. Incident light rays
that are responsible for the bottom of the observed arc of the
first-order rainbow when h ≈ 0° strike falling drops below their
horizontal centerline, with the drops being below the observer’s
height and opposite to the sun. As h increases, this same loca-
tion on the rainbow arc continues to be called the bottom of the
rainbow. We give this precise definition of the “top” and “bot-
tom” of the rainbow because the terms have not been applied
uniformly in the literature, and because the transformation ξ
into h for top and bottom is less trivial than it looks. For in-
stance, the authors of [28] used a different convention, in
which their “top” corresponds to our “bottom” and vice versa.
As another example, Volz [40] in his discussion of the Möbius
formula had applied the wrong sign in front of h [18].

In like manner, the incident light rays that are responsible
for the top of the observed arc of the second-order rainbow
when h ≈ 0° strike falling water drops below the droplet hori-
zontal centerline, with the drops being above the observer’s
height and opposite to the sun. The incident light rays that

Fig. 5. Light rays from the sun with the sun height angle h incident
on an oblate spheroidal falling water droplet.
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are responsible for the bottom of the observed arc of the sec-
ond-order rainbow when h ≈ 0° strike the falling water droplets
above the horizontal droplet centerline, with the drops being
below the observer’s height and opposite to the sun. This cor-
responds to ξ � −h in Figs. 2 and 5. Equations (28), (29), and
(30e) for p � 3 then become
ΘR

3 � ΘD
3 � 64ρ sin�βD0 �cos3�βD0 � cos�2βD0 � cos�ΘD

3 − 2h�
�O�ρ2�; (35)

in agreement with Eq. (6) of [18].

B. Generalization to High-Order Rainbows and to
Tilted Scattering Planes
Next we turn to the generic case and consider the ξ-dependent
factor in the Möbius formula [Eq. (29)], which reads
cos�ΘD

p � 2ξ�. We first consider the top of the observed rain-
bow arc and with Fig. 5 we observe that (i) if the Descartes ray
deflection angleΘD

p is in the second or first quadrant defined by
the clockwise or counterclockwise progression of the ray path
within the drop beginning from the forward scattering direc-
tion (e.g., the p � 2 and p � 5 bows for water), then ξ � h.
Similarly, (ii) if ΘD

p is the third or fourth quadrant defined by
the progression of the ray path within the drop beginning from
the forward scattering direction (e.g., the p � 3 and p � 4
bows for water), then ξ � −h. Then ξ � h sgn�sin�ΘD

p ��, where
sgn�x��1 if x>0

�0 if x�0

�−1 if x<0: (36)

Inserting this into cos�ΘD
p � 2ξ�, one gets

cos�ΘD
p � 2ξ� � cos�θDp � 2h�; (37)

where θDp ∈ �0; 180°� is the rainbow scattering angle, which is
related to the rainbow deflection angle ΘD

p ∈ �0;∞� by
θDp � arccos�cos�ΘD

p ��: (38)

Similarly, for the bottom of the observed rainbow arc one
obtains

cos�ΘD
p � 2ξ� � cos�θDp − 2h�; (39)

which is valid for any ΘD
p , p, and m. With these modifications

and using Eq. (33) to relate ϵ and ρ, the generalized Möbius
formula [Eq. (29)] for shift of the top and bottom of the ob-
served rainbow arc generated by an oblate spheroid becomes

ΔΘp ≡ ΘR
p − ΘD

p � �−1�p�116ρ sin�βD0 �cos3�βD0 �Fp�2βD0 �
× cos�θDp � 2h� �O�ρ2�; (40)

in which the upper sign is for the top of the rainbow and the
lower sign is for the bottom.

In the most general case, the scattering plane of an incident
light ray is not vertical but is tilted from the vertical by the
azimuthal angle φ. The intersection of the inclined scattering
plane with a spheroid is again an ellipse. Assuming that the out-
of-plane nature of the lightpath due to inclined refraction and
reflection can be neglected to first order in ρ, one finds in accor-
dance with Eq. (4) of Ref. [18] that

ΔΘp � �−1�p�116ρ 0 sin�βD0 �cos3�βD0 �Fp�2βD0 � cos�θDp � 2h 0�
� O�ρ2�; (41a)

where

ρ 0 � ρ�1 − sin2�φ�cos2�h�� � O�ρ2� (41b)

is the effective value of the nonsphericity parameter of the drop-
let perimeter in the tilted scattering plane. In addition, h 0 is the
angle between the major axis of the elliptical perimeter and the
sun, where

tan�h 0� � tan�h�∕ cos�φ�: (41c)

Equation (41a) reduces to Eq. (40) at the top of the rainbow
whereφ � 0° and at the bottom of the rainbow where φ � 180°.
The φ-dependence of the Möbius shift is evident for h � 0°, also
known as side-on incidence, and unpolarized incident light in the
wave scattering results of Figs. 5(b) and 5(c) of [27].

4. CONDITIONS FOR THE RAINBOW ANGLE TO
BE INSENSITIVE TO THE NONSPHERICITY OF
DROPS

In this section, the terms in Eq. (40) of order ρ2 and higher are
neglected for φ � 0°, 180°. In this case, we observe that ΔΘp is
zero if and only if one of the two last factors of Eq. (40) is zero:

Fp�2βD0 � cos�θDp � 2h� � 0: (42)

We note from Eqs. (30a)–(30h) that Fp�2βD0 � is a function
of cos�2βD0 �. Thus, for this analysis we split F into two factors S
and P as

Fp�2βD0 � � Sp�cos�2βD0 ��Pp�cos2�2βD0 ��; (43)

in which

Sp�cos�2βD0 �� � 1 for even p

� cos�2βD0 � for odd p: (44)

The remaining factor Pp�cos2�2βD0 �� is a polynomial function of
cos2�2βD0 � of degree 0 for p � 2; 3; of degree 1 for p � 4; 5;
and so on. See Eqs. (30a)–(30h).

Fig. 6. For p � odd and rainbow angle of refraction βD0 � 45°, the
effect of drop flattening on the first �p� 1�∕2 interactions of the ray
with the drop surface is to first order cancelled by the effect of drop
flattening on the remaining �p� 1�∕2 interactions. This is illustrated
here for p � 3 (the second-order rainbow).
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The consequences of Sp�cos�2βD0 ���0, or Pp�cos2�2βD0 ���0,
or cos�θDp � 2h� � 0 are as follows.

Case A: Sp�cos�2βD0 �� � 0. This occurs only for odd p and
gives βD0 � 45°. This implies that each two consecutive angles η
where the Descartes ray hits the droplet surface are separated by
90°. If the number of interactions with the surface is even
(hence p is odd), then for βD0 � 45° the effect of nonsphericity
on the deviation of the ray in the first half of its path to O�ρ� is
counterbalanced by the effect in the second half of its path (see
Fig. 6). For any odd p there is one value ofm for whichΔΘp�m�
is zero due to Sp�cos�2βD0 �� � 0, independent of the value of
the sun height angle h.

Case B: Pp�cos2�2βD0 �� � 0. For p > 3 there are additional
solutions for the increasingly more complicated rainbow ray
paths, which result in insensitivity to droplet flattening. The
polynomial character of Pp implies that there are two such addi-
tional flattening-neutral rainbow ray paths for p � 4; 5; four of
them for p � 6; 7; and so on that are independent of h. We
have not been able to find a simple geometrical interpretation
of these additional neutral points.

Case C: cos�θDp � 2h� � 0. If the bisector between the in-
coming rainbow ray and the emerging rainbow ray coincides
with the major or minor axes of an ellipse, the lightpath inside
the ellipse is symmetrical with respect to the axis. Then, the
value of the shift ΔΘp reaches an extremum: either a maximum
(positive shift) or a minimum (negative shift). This situation
occurs when jθDp � 2hj � kπ. Between two consecutive ex-
trema there should be a zero, corresponding to an inclined bi-
sector with respect to the axis of the ellipse. Contrary to higher
order Möbius approximations [37], in the first-order Möbius
approximation considered here the oscillation term is a simple

cosine function cos�θDp �2h�. This implies that for this approxi-
mation the zeros occur if jθDp � 2hj � kπ � π∕2, which cor-
responds to a situation where the bisector of the incoming and
emerging rays coincides with a bisector of the two main axes of
the ellipse. For a given value of h there are p − 1 values of m for
which ΔΘp�m� � 0. If h � 0° (sun at the horizon), this hap-
pens when the rainbow scattering angle θDp is 90°.

Table 1 shows, for 1 < m < 2 and h � 0°, the zero points
of the Möbius shifts for rainbows up to order five (2 ≤ p ≤ 6)
as well as the sign of ∂Θp∕∂m and ∂Θp∕∂h. Figure 7 displays,

Fig. 7. Möbius shift as a function of index of refraction for the first-
order (p � 2), second-order (p � 3), third-order (p � 4), and fourth-
order (p � 5) rainbows for sun height 0°. Values are for ρ � 0.025,
which corresponds to the ellipticity of falling water drops of radius
0.5 mm [13].

Table 1. Möbius-Insensitive Indices of Refraction m for h � 0° (Sun at the Horizon) and 1 < m < 2

Rainbow Order m Factor that is Zeroa sign�∂ΔΘp∕∂m� sign�∂ΔΘp∕∂h�b
Rainbow

Deflection Angle
Rainbow

Scattering Angle

First-order (p � 2) 1.1157 C + + 90.0° 90.0°
Second-order (p � 3) 1.0400 C + + 90.0° 90.0°

1.3416 A − 0 233.1° 126.9°
1.1580 C + − 270.0° 90.0°

Third-order (p � 4) 1.0209 C + + 90.0° 90.0°
1.1764 B − 0 245.2° 114.8°
1.2212 C + − 270.0° 90.0°
1.7153 B − 0 414.2° 54.2°
1.9630 C + + 450.0° 90.0°

Fourth-order (p � 5)c 1.0130 C + + 90.0° 90.0°
1.1084 B − 0 250.0° 110.0°
1.1285 C + − 270.0° 90.0°
1.3868 A − 0 427.4° 67.4°
1.4451 C + + 450.0° 90.0°

Fifth-order (p � 6)d 1.0089 C + + 90.0° 90.0°
1.0737 B − 0 252.4° 107.6°
1.0851 C + − 270.0° 90.0°
1.2468 B − 0 432.9° 72.9°
1.2713 C + + 450.0° 90.0°
1.6127 B − 0 607.9° 112.1°
1.6848 C + − 630.0° 90.0°

aCase A is Sp�cos�2βD0 �� � 0; Case B is Pp�cos2�2βD0 �� � 0; Case C is cos�θDp � � 0.
bValid for the top of the rainbow.
cTwo more zeros occur for m � 2.1032 (Case B) and m � 2.4204 (Case C), respectively.
dTwo more zeros occur for m � 2.4978 (Case B) and m � 2.8834 (Case C), respectively.

Research Article Vol. 56, No. 19 / July 1 2017 / Applied Optics G95



for 1 < m < 2 and h � 0°, the Möbius shift for rainbows up to
order 4 (2 ≤ p ≤ 5) for oblate spheroids with nonsphericity
parameter ρ � 0.025.

5. DISCUSSION AND CONCLUSIONS

We have obtained a general formula for the Möbius shift of high-
order rainbows to first order in the drop ellipticity. The extension
of the first-order Möbius approximation to high-order (p ≥ 4)
rainbows is new, and their properties are explored by looking
at the behavior of the shift as a function of m. It was found that
the number of refractive indices at which the rainbow angle is
insensitive to drop flattening increases with p. Some of these neu-
tral points are independent of h. One cause of neutrality
(βD0 � 45°) occurs for odd values of p only. This geometry has
been examined before for the second-order rainbow (p � 3)
[18], but for larger values of p, other types of Descartes ray paths
emerge for which the rainbow angle is insensitive to flattening.
Their geometric significance is still to be unraveled.

Whenm turns out to be close to a neutral point, the first-order
Möbius result is a poor approximation to the total Möbius shift.
For water and visible light, this is only the case for the second-
order rainbow (p � 3), and theMöbius term to second-order in ϵ
or ρ must be invoked. For the p ≠ 3 rainbows considered here,
we believe that the first-order Möbius approximation gives suffi-
ciently accurate results to be used for the present analysis of super-
numeraries. This belief emerges from an evaluation of the O�ρ2�
Möbius term for p � 3 [37], which suggests that for the other
rainbows, the O�ρ2� Möbius term for a ≈ 0.5 mm is a correc-
tion to the maximum rainbow shift of order ∼1%. This accuracy
is more than sufficient for our purpose. Further ray-tracing com-
putations are needed to obtain an improved assessment of the
accuracy of the first-order Möbius approximation.

APPENDIX A: HISTORICAL ASIDE

As an historical aside, in his 1961 paper in Handbuch der
Geophysik VIII [40], F. E. Volz noted that in 1814 Venturi knew
that the rainbow angle shifts with the flattening of the drops and
had calculated the “Möbius shift” for h � 0° using a simplified
model for the shape of oblate raindrops. He successfully checked
his model experimentally with a suitable optical setup [41]. For a
given aspect ratio b∕a, he thus obtained the “Venturi shift,”
which turns out to be about twice as large as the Möbius shift
for a spheroidal drop. He then conjectured that rainbow super-
numeraries were the result of the existence of two different drop-
let sizes in a rain shower. One population of droplets was small
and spherical, producing the normal rainbow. The other popu-
lation was large and flattened, giving rise to a shifted rainbow: the
supernumerary. As we know now, this is not the mechanism that
produces supernumeraries but instead generates twinned rain-
bows [35]. Venturi’s paper was translated from Italian into
German and commented on by H. W. Brandes in 1816 [42].

APPENDIX B: SIMPLIFICATION OF T p�αD
0 � IN

EQ. (28)

The simplification of T p�αD0 � in Eq. (28) to yield the result of
Eqs. (29)–(31) is summarized as follows. (i) As was mentioned
after Eq. (19b), one substitutes δq and ηq of Eqs. (20a) and

(20e) to O�ϵ0� into the expressions for Uq and V q in
Eqs. (19a) and (19b), respectively, in order to obtain these quan-
tities toO�ϵ0�. (ii) One substitutes the resultingUq and V q into
T p of Eq. (21b) to obtain T p to O�ϵ0�. (iii) One rearranges T p
so as to factor out �−1�p�1 cos�ΘD

p � 2ξ�. The remaining por-
tion of T p can be written as

�p − 1� sin�pχ� �
Xp−2
r�0

2�p − 1 − r� sin��p − 1 − r�χ�; (B1)

where

χ � 2βD0 : (B2)

(iv) One then writes sin��p − 1−r�χ� in terms of powers of cos�χ�
and sin�χ� and factors out

2 sin�χ��1� cos�χ�� � 8 sin�βD0 �cos3�βD0 � (B3)

from Expression (B1). The remaining portion is Fp�χ� of
Eqs. (30a)–(30h) and (31a) and (31b).

APPENDIX C: EXPLICIT MÖBIUS FORMULA
FOR RAINBOWS UP TO ORDER FIVE (p� 6)

The deflection angle and scattering angle of the �p − 1�-order
rainbow are Θ R

p and θRp , respectively; the Möbius shift of the
deflection angle is ΔΘp ≡ ΘR

p − ΘD
p ; the angle of refraction of

the Descartes ray, βD0 , for the �p − 1�-order rainbow for a spheri-
cal particle used in the body of this paper is here denoted by βp;
ρ ≡ �b − a�∕�b� a� parameterizes the nonsphericity of the
oblate spheroid; h is the sun height angle. All formulas refer
to the top of the rainbows; for their bottoms, the plus sign
in front of h should be replaced by a minus sign. We have

ΔΘ2 � −16ρ sin�β2�cos3�β2� cos�θ2 � 2h� � O�ρ2�; (C1)

ΔΘ3 ��64ρ sin�β3�cos3�β3�cos�2β3�cos�θ3�2h��O�ρ2�;
(C2)

ΔΘ4 � −32ρ sin�β4�cos3�β4��6 cos2�2β4� − 1� cos�θ4 � 2h�
� O�ρ2�; (C3)

ΔΘ5 � �64ρ sin�β5�cos3�β5� cos�2β5��8 cos2�2β5� − 3�
× cos�θ5 � 2h� � O�ρ2�; (C4)

ΔΘ6�−48ρ sin�β6�cos3�β6�
�
80

3
cos4�2β6�−16cos2�2β6��1

�
×cos�θ6�2h��O�ρ2�: (C5)
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