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The appearance of supernumeraries of high-order rainbows in heavy rain showers is explored for rainbows up to
order five (p � 6). This is done by using a combination of the ray-theory-based first-order Möbius approximation
for high-order rainbows with the Airy approximation of the rainbow radiance distribution. We conclude that
supernumerary formation of rainbows of order three, four, and five is possible in natural rain showers.
Supernumeraries of the third-order and fourth-order rainbows are preferentially formed near the bottom of these
rainbows. A strategy for observing supernumeraries of high-order rainbows is proposed. © 2017 Optical Society of

America
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1. INTRODUCTION

Two different situations can lead to the appearance of rainbow
supernumeraries in Nature. The first and most obvious case
is when the drop size distribution in rain, drizzle, or fog is
strongly peaked in the region of small sizes. Then the spacing
between the supernumeraries is directly related to the size of the
dominant drop size, and the (weak) dependence of the spacing
on scattering azimuth φ is directly related to the flattening of
these drops. The second case, first recognized by Fraser [1], is
when the drop size distribution is very broad and flat, as occurs
in heavy showers. Then the radiance of the supernumeraries
and their mutual spacing are markedly dependent on the
scattering azimuth, but the spacing between the supernumera-
ries does not contain quantitative information about the range
of drop sizes in the distribution. We concentrate on this
latter case.

The mechanism behind this case is as follows: consider a
(p − 1)-order rainbow, in which light rays enter the drop,
and make p − 1 internal reflections at the surface before exiting.
As the drop radius a increases, the deflection angle Θ of the
principal maximum of the rainbow radiance distribution for
a spherical drop decreases toward the Descartes rainbow
deflection angle. However, the nonsphericity parameter ρ of
the rain drops increases with a. If this increase of ρ results
in an increase of the rainbow deflection angle ΘD

p via
the Möbius mechanism, and hence if the Möbius shift

ΔΘp > 0, then the position of each relative maximum in
the rainbow radiance distribution, labeled by i � 0; 1; 2…,
as a function of a will have a stationary point aeff ;i, and the
supernumerary interference pattern belonging to aeff ;i will be-
come selectively visible. Hence the appearance of supernumera-
ries of a (p − 1)-order rainbow in heavy showers requires
that ΔΘp > 0.

So far, this mechanism has been investigated for the first-
order and second-order rainbows only [1,2], as application
to higher-order rainbows had seemed of minor significance
by lack of credible observations [3]. This changed in 2011,
when the first photographic observations of the third-order
[4] and fourth-order [5] natural rainbows where published; a
milestone that was followed by the detection of the fifth-order
rainbow in 2012 [6], and one year later possibly the seventh-
order [7] rainbow. This new situation stimulated us to inves-
tigate under what conditions the Fraser mechanism [1] should
result in the appearance of supernumeraries of natural high-
order rainbows.

Our study is split into two parts. In Part I, a general ray-
theory-based first-order Möbius approximation for the general
(p − 1)-order rainbow was derived and its properties were inves-
tigated as a function of sun height angle h and index of
refraction m [8]. In Part II here, the Möbius approximation
is merged with the Airy approximation of the rainbow
radiance distribution resulting in an analytical formula for
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the (p − 1)-order rainbow radiance distribution for oblate sphe-
roidally deformed raindrops, suitable for the investigation of
the occurrence of supernumeraries of high-order rainbows
during showers.

The body of this paper is organized as follows. In Section 2
the formulas of Airy theory are modified so as to include the
first-order Möbius shift. In Section 3 formulas are obtained for
the values of the drop diameter a for which the maxima in the
modified Airy theory are stationary, which forms the basis of
the Fraser mechanism for supernumerary formation. The varia-
tion of the angular spacing of the supernumeraries is also
determined as a function of the sun height angle. Section 4
discusses the second-order Möbius term, needed for analyzing
the second-order rainbow and for estimating the accuracy of the
first-order approximation. In Section 5 the conditions under
which supernumeraries may appear are presented and illus-
trated with a diagram. In Section 6 the results are discussed
and a strategy is proposed for observing the supernumeraries of
high-order rainbows in heavy showers. Lastly, in Section 7 we
recount our major results and conclusions.

2. COMBINING AIRY THEORY WITH THE
MÖBIUS SHIFT

Assuming that the Airy shift and the Möbius shift are additive
for oblate spheroidally deformed drops with small ellipticity,
the Airy approximation to the rainbow radiance distribution
R can modeled in a number of different ways. For the develop-
ment here, we incorporate the Möbius shift into the Airy
approximation as [2]

R�a;Θ� ∝ a7∕3Ai2�f �a;Θ��; (1a)

with

f �a;Θ� � −
1

h1∕3cubic

�
2πa
λ

�
2∕3

�Θ − �ΘD
p � ΔΘp��; (1b)

where Ai is the Airy function, Θ is the deflection angle, ΘD
p is

the Descartes rainbow deflection angle of the (p − 1)-order rain-
bow for spherical particles, ΔΘp is the Möbius shift, λ is the
wavelength of the incident light, a is the volume-equivalent
drop radius (called r in [8]), and hcubic is the parameter in
Airy’s cubic wavefront, given by

hcubic �
�p2 − 1�

p2
tan�αp�
cos2�αp�

; (1c)

in which αp is the angle of incidence of the Descartes ray for the
(p − 1)-order rainbow for spherical particles. See Ref. [9] for a
similar representation of hcubic for p � 2. The first three relative
maxima of Ai2�x� occur for x0 � −1.0188, x1 � −3.2482,
x2 � −4.8201, in which x0, x1, x2 denote the principal maxi-
mum, the first supernumerary, and the second supernumerary,
respectively. Equation (1a) ignores the smaller contribution to
the rainbow radiance for unpolarized incident light that is pro-
portional to the square of the derivative of the Airy function
[10,11]. The effect of the derivative term for polarized incident
light is evident in the wave theory results of Figs. 4(a) and 4(b)
of [12].

The Möbius shift ΔΘp of a (p − 1)-order rainbow was
derived in [8]. For 2 ≤ p ≤ 6 it is given by

ΔΘ2 � −16ρ sin�βD2 �cos3�βD2 � cos�θD2 � 2h� �O�ρ2�;
(2a)

ΔΘ3 � �64ρ sin�βD3 �cos3�βD3 � cos�2βD3 �
× cos�θD3 � 2h� �O�ρ2�; (2b)

ΔΘ4 � −32ρ sin�βD4 �cos3�βD4 ��6cos2�2βD4 � − 1�
× cos�θD4 � 2h� �O�ρ2�; (2c)

ΔΘ5 � �64ρ sin�βD5 �cos3�βD5 � cos�2βD5 ��8cos2�2βD5 �
− 3� cos�θD5 � 2h� �O�ρ2�; (2d)

ΔΘ6�−48ρsin�βD6 �cos3�βD6 �
�
80

3
cos4�2βD6 �−16cos2�2βD6 ��1

�

×cos�θD6 �2h��O�ρ2�; (2e)

in which θDp is the Descartes rainbow scattering angle of the
(p − 1)-order rainbow for spherical particles which is confined
to the interval 0 ≤ θDp ≤ π, βDp is its angle of refraction, h is the
sun height angle [not to be confused with the Airy cubic
wavefront parameter hcubic of Eq. (1c)], and where

ρ ≡
bmax − bmin

bmax � bmin

; (3)

parameterizes the nonsphericity of the oblate spheroid, in
which bmax and bmin are the semi-major and semi-minor axes,
respectively, of the spheroid.

The rainbow scattering angle θDp is related to the rainbow
deflection angle ΘD

p by

θDp � arccos�cos�ΘD
p ��: (4)

Equations (2a)–(2e) refer to the top of the rainbow, which is
the rainbow segment closest to the zenith (see Section 3a of
Ref. [8] for a discussion of this convention). For the bottom
(i.e., the segment observed to be farthest from the zenith),
the plus sign in front of the h has to be replaced by a minus
sign. For other scattering azimuths φ, h, and ρ have to be
replaced [2,8] by h 0 and ρ 0, respectively, where

ρ 0 � ρ�1 − sin2�φ�cos2�h�� �O�ρ2�; (5a)

tan�h 0� � tan�h�∕ cos�φ�: (5b)

For the dependence of ρ on a, we use the quadratic
approximation to Green’s formula [13]:

ρ ≅ 0.050a2; (6)

as was done in Ref. [2], where a is given in millimeters. For
the present analysis Eq. (6) is sufficiently accurate up to
a ≅ 1.5 mm [2].

For the numerical evaluation of Eqs. (1a)–(1c) for the top
and bottom of natural rainbows we substitute the values of βDp
and θDp for m � 1.333 in Eqs. (2), for θDp > 90° we replace the
factor cos�θDp � 2h� by − cos�180° − �θDp � 2h��, we insert
Eq. (6) into Eq. (2), and then we define the function
Möp�h� by
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ΔΘp � a2Möp�h�; (7)

where Möp�h� is the Möbius shift (in radians) for m � 1.333
(λ � 600 nm) and ρ � 0.050 [hence a � 1 mm according
to Eq. (6)].

Then, one obtains for the top of the rainbow for 2 ≤ p ≤ 6:

Mö2�h� � −0.230 cos�137.9°� 2h�
� �0.230 cos�42.1° − 2h�; (8a)

Mö3�h� � −0.013 cos�129.1°� 2h�
� �0.013 cos�50.9° − 2h�; (8b)

Mö4�h� � �0.362 cos�41.7°� 2h�; (8c)

Mö5�h� � �1.90 cos�43.7°� 2h�; (8d)

Mö6�h� � −0.451 cos�128.2°� 2h�
� �0.451 cos�51.8° − 2h�: (8e)

Similarly, for the bottom of the rainbow:

Mö2�h� � �0.230 cos�42.1°� 2h�; (9a)

Mö3�h� � �0.013 cos�50.9°� 2h�; (9b)

Mö4�h� � �0.362 cos�41.7° − 2h�; (9c)

M ̈o5�h� � �1.90 cos�43.7° − 2h�; (9d)

Mö6�h� � �0.451 cos�51.8°� 2h�: (9e)

3. STATIONARITY OF THE AIRY SHIFT WITH
RESPECT TO a

The condition for an Airy maximum (either the principal maxi-
mum i � 0, or one of the supernumerary maxima i � 1; 2;…)
to appear in a broad drop distribution according to the Fraser
mechanism [1] is that the deflection angle at the i Airy maxi-
mum Θ�a; xi� has a relative minimum as a function of particle
size a, �

∂Θ�a; xi�
∂a

�
� 0; (10)

which can be satisfied only when M ̈op > 0. The value of the
deflection angle Θ�a; xi� at this stationary point is denoted
by Θp;i.

The function Θ�a; xi� can be obtained by substituting
Eq. (7) in Eq. (1b) and putting f �a;Θ� � xi:

Θ�a; xi� − ΘD
p � M ̈op�h� × a2 � xih

1∕3
cubic

�
λ

2π

�
2∕3

a−2∕3;

(11)

which is an explicit expression of the total Airy plus first-order
Möbius shift of the deflection angle of the i radiance maximum

of an oblate spheroidal drop with respect of the Descartes
deflection angle for a spherical drop. By Eq. (10), one finds
that the effective drop radius aeff ;i associated with the stationar-
ity of the i Airy relative maximum is

aeff ;i�x� �
�
h1∕3cubic

3

�
λ

2π

�
2∕3 xi

M ̈op�h�

�3∕8
: (12)

Inserting aeff ;i in Eq. (12) gives the value of the deflection
angle of stationarity Θp;i of the i Airy maximum of the
(p − 1)-order rainbow for oblate spheroidal drops, and hence
of its positionΔΘp;i with respect of the Descartes rainbow angle
ΘD

p :

ΔΘp;i ≡Θp;i −ΘD
p � �3−3∕4�31∕4�h1∕4cubic

�
λ

2π

�
1∕2

x3∕4i M ö1∕4p �h�:

(13a)

From this it follows that the spacing between the j and i
radiance maxima is

Θp;j −Θp;i � �3−3∕4�31∕4�h1∕4cubic

�
λ

2π

�
1∕2

�x3∕4j − x3∕4i �Mö1∕4p �h�:

(13b)

Equation (13b) shows that the spacing of the supernumera-
ries depends on the sun height angle h via the Möp factor of
Eqs. (8) and (9). As was mentioned at the start of Section 2, the
combination of the Airy and Möbius shifts can be modeled in a
number of different ways. A different model giving similar
results was pursued in [14–16].

4. SPECIAL CASE: SECOND-ORDER MÖBIUS
SHIFT OF THE SECOND-ORDER RAINBOW FOR
WATER DROPS

The p � 3 rainbow for water requires special attention since
the first-order Möbius approximation is small and changes sign
at m �

ffiffiffiffiffiffiffiffi
9∕5

p
� 1.342 [2,8], which lies within the visible

spectrum for the refractive index of water. This has two con-
sequences. First, the refractive index dependence of the first
factor of Eqs. (8b) and (9b) cannot be neglected and should
be inserted. This can be achieved by expanding the expression
for ΔΘ3 of Eq. (2b) in a Taylor series about m0 �

ffiffiffiffiffiffiffiffi
9∕5

p
≅

1.342 to give

ΔΘ3�m� � ΔΘ3

� ffiffiffiffiffiffiffiffi
9∕5

p �
�

�
m −

ffiffiffiffiffiffiffiffi
9∕5

p �

×
�
dΔΘ3

dβD3

�
βD3 �45°

�
dβD3
dm

�
m�

ffiffiffiffiffiffi
9∕5

p

�O
h�

m −
ffiffiffiffiffiffiffiffi
9∕5

p �
2
i
: (14)

The first term in Eq. (14) is zero. In addition, the factors
(dΔΘ3∕dβD3 ) and (dβD3 ∕dm) can be evaluated as �dΔΘ3∕
dβD3 �βD3 �45° � −32ρ cos�θD3 � 2h� and �dβD3 ∕dm�m� ffiffiffiffiffiffi

9∕5
p �

−�5∕12� ffiffiffi
5

p
(see Ref. [2]). Substituting these into Eq. (2b)

along with
ffiffiffiffiffiffiffiffi
9∕5

p
� 1.342, one obtains

G100 Vol. 56, No. 19 / July 1 2017 / Applied Optics Research Article



ΔΘ3�m� � �29.81 × �m − 1.342� cos�θ3 � 2h�
�O

h
ρ
�
m −

ffiffiffiffiffiffiffiffi
9∕5

p �
2
i
�O�ρ2�; (15)

and Eq. (8b) for the top of the second-order rainbow becomes

Mö3�h� � �1.491 × �1.342 − m� cos�51° − 2h�: (16a)

Similarly, Eq. (9b) for the bottom of the second-order
rainbow becomes

Mö3�h� � �1.491 × �1.342 − m� cos�51°� 2h�: (16b)

Second, the O�ρ2� term in the Möbius expansion has to be
considered. A formula for the top of the bow, and valid near
m →

ffiffiffiffiffiffiffiffi
9∕5

p
, was previously published in [2]. In accordance

with Eqs. (11) and (13) of [2], it reads

�ΔΘ3�sec:order � ρ2
�
−
32

3
cos2�51° − 2h� − 16 sin�102° − 4h�

�

− 29.81 × �1.342 −m�

× ρ2
�
10 −

28

3
cos2�51° − 2h� − 5 sin�102° − 4h�

�

�O
h
ρ2
�
m −

ffiffiffiffiffiffiffiffi
9∕5

p �
2
i
�O�ρ3�; (17)

which may be rewritten as

�ΔΘ3�sec: order � ρ2f16.9 cos�4�h − 52.5°�� − 5.33g
− 29.81 × �1.342 − m�
× ρ2f�5.33� 6.84 cos�4�h − 59°��g
�O

h
ρ2
�
m −

ffiffiffiffiffiffiffiffi
9∕5

p �
2
i
�O�ρ3�: (18)

Originally [2], Eq. (17) was derived by repeating the calcu-
lation presented by Möbius [17] for the first-order rainbow, but
now for one additional internal reflection. First, all terms of
order ρ were evaluated, which yielded Eq. (2b). Then, all terms
of order ρ2 were collected and the result was, as in Eq. (14),
expanded in a Taylor series about m0 �

ffiffiffiffiffiffiffiffi
9∕5

p
up to order

O�m −
ffiffiffiffiffiffiffiffi
9∕5

p
�, yielding Eq. (17). In Eq. (17), the first and

second term correspond to the first and second term of the
Taylor expansion. In front of the second term the same number
29.81 appears as in Eq. (15). It corresponds to the numerical
value at m �

ffiffiffiffiffiffiffiffi
9∕5

p
of d�64ρ sin�βD3 � cos3�βD3 � cos�2βD3 ��∕dm.

Inserting the relation ρ � 0.05a2 [Eq. (6)] in Eq. (17)
determines the size-dependence of �ΔΘ3�sec: order. We note that
one can approximately validate the result of Eq. (17) for the
shift of the second-order rainbow using the ray tracing
technique of Yu et al. (Ref. [18], Fig. 8) for m � 1.342,
which gives the entire Möbius correction to all orders in ρ ≥ 2.
See Refs. [19–21] for preliminary results of two such
comparisons.

5. RESULTS

The appearance of supernumeraries during a natural rain
shower at a particular segment of the rainbow arc requires
that the segment is above the horizon and that the Möbius
shift is positive. Figure 1 shows a visibility diagram for the

supernumeraries, and Table 1 gives some numerical results.
For p � 2, 4–6 the calculations are based on the first-order
Möbius approximation. For the second-order rainbow
(p � 3) the points of stationarity are calculated using
Eqs. (16) and (17), reproducing the results obtained in [2], in-
cluding the wavelength dependence. Figure 1 and Table 1 give
the result for m � 1.3330 and λ � 600 nm. For other realistic
values of m and λ, the results are similar.

From Table 1 and Fig. 1 we note the following:

– Our model reproduces quite well the angular separation
of 0.75° between the i � 1 and j � 2 supernumeraries of the
first-order rainbow (p � 2) that was determined by Fraser [1]
for h � 0° and λ � 550 nm. We find from Eq. (13b) that the
separation is 0.79° for h � 0° and λ � 550 nm.

– Excluding the special case of the second-order rainbow
(p � 3), one observes that the angular separation between
the Descartes rainbow angle for a sphere, and the principal rain-
bow maxima for an oblate spheroid, and its supernumeraries
increase with p (Table 1). This increase is about the same as
the increase due to dispersion of these rainbows, hence the
width of their colored band.

– For m in the visible range, the first-order Möbius approxi-
mation for all the rainbows we considered happens to be pos-
itive for h � 0° [Eqs. (1a)–(1c)]. This implies that all rainbows
considered (again with exception of p � 3 ) are capable of
producing supernumeraries when the sun is at the horizon.

– Despite the inter-rainbow variation by a factor 8 (p ≠ 3)
of the constant multiplying the oscillating factor of Mö, the
inter-rainbow variation of aeff for each rainbow maximum
amounts to only a factor 1.7. The lowest value of aeff found
in Table 1 is 0.14 mm, and the highest is 0.42 mm. This cor-
responds to values of ρ between 0.001 and 0.009, and axial
ratios bmax∕bmin between 1.002 and 1.018.

– For the first-order, second-order, and fifth-order rainbows
(p � 2, 3, 6), the maximum angular separation between the
supernumeraries occurs at the top of the rainbow. In contrast,
for the third-order (p � 4) and fourth-order (p � 5) rainbows,

Fig. 1. Visibility diagram of supernumeraries for the top and bot-
tom of the (p − 1)-order rainbow in heavy showers. Green/solid: the
rainbow segment is above the horizon and supernumeraries are pos-
sible; Blue/dashed: the rainbow segment is above the horizon and
supernumeraries are not possible; Grey: the rainbow segment is below
the horizon. No diagrams are given for the bottom of the rainbow for
p � 2, 3, 6 since they never raise above the horizon.
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this most favorable situation occurs at the bottom of the rain-
bow at h ≅ 20°, when this segment is still below the horizon.

– We add to this that the angular separation between
principal maximum, first supernumerary, and second super-
numerary does not decrease dramatically as a function of the
azimuthal angle φ. Its proportionality toM ̈o1∕4 [Eq. (13b)] in-
dicates that at 60° from top or bottom the decrease in
separation is 30% at most [see Eqs. (5a) and (5b)].

6. DISCUSSION

We applied our previously obtained [8] general formula for the
Möbius shift to p ≤ 6 rainbows in an attempt to investigate
whether, and if so under what conditions, supernumeraries
of high-order rainbows (up to the fifth-order, hence up to
p � 6) may show up in natural showers of a broad drop size
distribution. Special focus is on the third-order and fourth-
order rainbow. The main conclusion is that the highest likeli-
hood for supernumeraries of the third-order and fourth-order
rainbows (p � 4; 5) to appear is near the bottom of these bows
rather than near their tops. This implies that a successful search
for these supernumeraries should concentrate on the bottom
regions of these bows and preferably take place for sun height
angles larger than 35°–40°.

So far, supernumeraries of the third-order and fourth-order
rainbows have not been observed in Nature. In light of the for-
going discussion, that may not be a surprise. At sun heights
favorable for this type of observation, the first-order rainbow
may be well below the horizon so that the observer lacks an
important hint that a high-order rainbow may be present on
the other side of the celestial sphere. Perhaps it is not a coinci-
dence that all early observations of these high-order rainbows
[22] took place at sun heights below 20°, when the first-order
and second-order rainbows were well above the horizon.

Contrary to these other cases, a supernumerary of the fifth-
order rainbow (p � 6) has been observed. It appeared in the
discovery photograph of this rainbow, and has been extensively
analyzed by Edens [6]. However, the observational data of the
simultaneously appearing first- and second-order rainbows and
their supernumeraries led him to conclude that the p � 6
supernumerary emerged because of a sharply peaked rain drop
size distribution rather than by the Fraser mechanism discussed
in this paper. This is consistent with Edens’ report [6] that the
rainbows showed up in light rain, rather than in a heavy shower,
as well as with the observed angular distance to the principal
maximum of 3.6°� 0.3° rather than 4.7° (Table 1). His other
photographic observations of the fifth-order rainbow [22],
many of which took place in heavy showers, are still waiting
to be searched for supernumeraries [23].

The present analysis is based on a number of approximate
formulas. For the drop flattening, we used a quadratic fit to
Green’s [13] relation between the (equivalent) drop radius
and the nonsphericity parameter ρ, as displayed in his
Table 1. At the calculated values of the effective radius of drops
creating supernumeraries aeff (Table 1), the quadratic approxi-
mation to Green’s formula is accurate to within 0.5%, justifying
its use here. The same holds for the spheroid approximation to
the shape of a falling drop, which is considered to be correct forTa
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drop radii up to about 0.5 mm [24]. This is also within the
range of the values of aeff in our Table 1.

In this paper, the required extension of the first-order
Möbius approximation to high-order rainbows is new
[8,25]. For the p ≠ 3 rainbows considered here, we believe that
the first-order Möbius approximation gives sufficiently accurate
results to be used for the present analysis of supernumeraries.
This belief emerges from an evaluation of the O�ρ2� Möbius
term for p � 3, which suggests that for the other rainbows, the
O�ρ2� Möbius term for a ≈ 0.5 mm is a correction to the
maximum rainbow shift of order ∼1%. This accuracy is more
than sufficient for our purpose. Further ray tracing computa-
tions are needed to obtain an improved assessment of the
accuracy of the first-order Möbius approximation.

7. CONCLUSIONS

We have investigated for rainbows up to p � 6 the occurrence
of supernumeraries in a broad drop-size distribution by incor-
porating the previously obtained [8] generalized Möbius for-
mula for the shift of the Descartes rainbow angle into the
Airy representation of the rainbow. The conclusions for the
high-order rainbows (4 ≤ p ≤ 6) observed to date are:

– The third-order (p � 4) and fourth-order (p � 5) rain-
bows may show supernumeraries in showers. The spacing
between them is roughly proportional to the dispersion of
the rainbows. The most favorable location for their appearance
is the rainbow segment near their bottom, which appears at
solar height angles where the first-order and second-order rain-
bows are scarcely above the horizon, or are not above it at all.

– If the first-order and second-order rainbows are below the
horizon, the observer lacks an indication that the third-order or
fourth-order rainbows are ready to be photographed. A success-
ful detection of their supernumeraries may require one to take
pictures “in the blind” during heavy rainfall in the right
direction.

– The fifth-order rainbow (p � 6) may also show its super-
numeraries in showers. Their only detection thus far [6] has
been for a supernumerary caused by a peaked drop size distri-
bution instead.

– The angular distance between supernumeraries in a broad
drop size distribution is markedly dependent on the scattering
azimuth angle φ, but the spacing between the supernumeraries
contains no information about the range of drop sizes present
in the distribution. On the other hand, while the angular dis-
tance between supernumeraries in a strongly peaked drop size
distribution is more weakly dependent on φ, the spacing be-
tween the supernumeraries does contain information about
the dimensions of the dominant drop size.

– Only in case of the second-order rainbow the presence of
supernumeraries provides direct evidence of a peaked drop size
distribution in the rainbow-generating rain. In that case, the
dominant drop size can straightforwardly be deduced from
spacing between the supernumeraries. For all other rainbows
considered here, additional information is needed to exclude
that the Fraser mechanism had been at work.
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