
Polarized rainbow

G. P. Konnen and J. H. de Boer

The Airy theory of the rainbow is extended to polarized light. For both polarization directions a simple ana-
lytic expression is obtained for the intensity distribution as a function of the scattering angle in terms of the

Airy function and its derivative. This approach is valid at least down to droplet diameters of 0.3 mm in visi-

ble light. The degree of polarization of the rainbow is less than expected from geometrical optics; it in-

creases with droplet size. For a droplet diameter >1 mm the locations of the supernumerary rainbows are

equal for both polarization directions, but for a diameter <1 mm the supernumerary rainbows of the weaker

polarization component are located between those in the strong component.

1. Introduction

Since the days of Airy1 the theory of the rainbow
is well established. In the beginning of the 19th century
he showed that the wave front emerging from a water
droplet is well approximated by a cubic law near the ray
of minimum deviation (Descartes ray). The interfer-
ence pattern of light from such a wave front was found
to be given by a new function Ai (z), which is oscillating
for negative arguments and drops to zero for positive z.
Later this function was called the Airy function after its
discoverer. The intensity distribution of the rainbow
is then proportional to Ai2 (z), where z R-0. Here
0 denotes the scattering angle and OR the angle of min-
imum deviation, which is the rainbow angle in geo-
metrical optics. This Airy solution is in good agreement
with the observed features of the rainbow for droplet
diameters larger than a few tenths of a millimeter.
Even the exact solution of the rainbow problem (worked
out with numerical methods) shows only minor devia-
tions from Airy's results. 2

There remains, however, a feature of the rainbow
where Airy's description breaks down. As shown by
Biot3 in the beginning of the 19th century, rainbow light
is strongly polarized, with the direction of the E vector
tangential to the rainbow. The reason for this is that
light rays, responsible for the rainbow, are always at
least reflected once inside the water droplet; for the
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Descartes ray this reflection occurs close to the Brewster
angle. Now it appears that the intensity distribution
of the weaker (radial) polarized component of rainbow
light differs completely from the Airy solution. In fact,
where the strong component shows a maximum inten-
sity (a supernumerary bow), the weaker one has a
minimum. In other words, the supernumerary rain-
bows in the weaker component are shifted to the loca-
tions of the minima in the stronger component, a feature
that was first experimentally observed by Bricard4 for
fog bows in 1940.

The reason for this shift is easy to understand.5 Let
us call the weaker component the polarized rainbow and
the stronger (tangential) one the common rainbow.
The main contribution to supernumerary bows is in-
terference of two light rays with a different impact on
the droplet and the same scattering angle (Fig. 1). For
the polarized rainbow, the vibrations of light (E vector)
are in the plane of incidence. If now the two angles of
incidence are below and above the Brewster angle, re-
spectively, an additional phase difference of 1800 be-
tween the two interfering rays is introduced for the
polarized rainbow; this does not occur for the common
one (see Fig. 2). Therefore, interferences are destruc-
tive where they should be constructive without this
phase jump. This results in a shift of the supernum-
erary bows for the polarized rainbow with respect to the
common one. Numerical calculations of the polarized
rainbow clearly show this behavior.2 For the weaker
secondary rainbow, formed after two internal reflections
in the droplet, such a shift should be absent, since the
phase jump of 1800 is compensated by the second re-
flection. Nevertheless, for quantitative calculations
Airy's formulas cannot be used in this case either, since
one of his assumptions is that the amplitudes of the
waves emerging from all parts of the cubic wave front
are equal. For the polarized rainbow, however, there
exists a sharp variation of the amplitude along the wave

15 June 1979 / Vol. 18, No. 12 / APPLIED OPTICS 1961



of supernumerary rainbows.
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Fig. 2. Schematic view of the phase jump of a light wave by internal
reflection inside a droplet for both polarization directions. IB denotes
the Brewster angle, i is the angle of incidence. Interference between
two rays with i < IB and i > B leads to a different interference pattern
for the two polarization directions, due to the additional phase jump
of 1800 for i < IB in the lower part of the figure. Such interference
plays an important role in rainbow formation. Apart from the phase
jump illustrated here, a weakening of the waves occurs at reflection.

This is not shown in the diagram.

front due to the variation of the Fresnel reflection
coefficient near the Brewster angle.

As far as we know, a simple extension of Airy's rain-
bow theory to polarized light does not so far exist. In
this paper we present an Airy solution for the polarized
rainbow, obtained by incorporating the first-order
variation of the Fresnel reflection coefficients into his
formalism. This yields a simple expression for this
intensity distribution in terms of the Airy function itself
and its derivative. In the validity domain of Airy's
theory, the resulting intensity distribution compares

well with those obtained by numerical techniques from
more sophisticated approaches.2 From this analytic
expression, general conclusions can be drawn about the
intensity distribution of the polarized rainbow as a
function of droplet size, as well as for the degree of po-
larization of rainbow light.

11. Calculation of the Rainbow Intensity Distribution
In this Section we primarily use Humphreys6 nota-

tion. We first choose orthogonal coordinates x,y and
take the origin at the point of inflection of the wave
front emerging from the droplet. Let y be parallel to
the Descartes ray. In the Airy approximation, this wave
front can be represented by the curve

y = [h/(3a 2 )]x3 , (1)

in a rain drop may lead to where a is the radius of the droplet, and h is a constant
erence between these rays with a value of 4.9 for the primary rainbow in water and
ptical path lengths. 28 for the secondary rainbow.6 This constant depends

only weakly on the index of refraction n. Also, i and r
are the angle of incidence and refraction at the droplet,
IB and RB are these angles for Brewster reflection,
where reflected light is completely polarized, and IR is
the angle of incidence for minimum deviation. We
define = i - IR and ad = 0 - OR, i.e., the scattering

- i, angle minus the geometrical rainbow angle; Od = 0 cor-
responds to scattering in the direction of minimum
deviation. We have 6

x = a a cosIR. (2)

The total vibration V(t) of the waves in the direction
Od is given by

V = f k(x) sin(fot - )dx, (3)

-"\ / -\ where k (x) is the amplitude of the waves per unit of
;// __\_/ \ / `/ im 1 length of the front, and is the phase shift of a wave in

direction d from position x with respect to a wave from
x = 0 in the same direction. Here is the angular fre-
quency of the light concerned. Thus

V(t) = 4 k(x) cos6dx sinwt - 4' k(x) sin6dx coswt

a A sinwt - B coswt. (4)

The intensity Int in a given direction is then

Int = A2 + B 2. (5)

For the cubic wave front we have, provided d is not
large,6

A (3a 2 ) (6)
Hence

A = Sw k(x) cos - (3 _-XOd)Xdx

A 3a2 (7

B= f k(x) sin -(3 -_XOd dx 

where X is the wavelength of the light. Following Airy,
we put k(x) - 1 for the common rainbow. In that case
B = 0 since 6 is antisymmetric in x, and we obtain the
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Y = i-IB, e = r-RB. (9)

According to Snell's law, sini = n sinr and cosidi = n
cosrdr. Thus, for small y,

l coslB 1 9
- yO=S ; e= =-y for water (n = 4/3). (10)
n cosRB n 16

Substituting y and e in Eq. (8) we have, for small y,

Am2/Am (-y + E)/co 3(IB - RB), (11)

where cos(IB - RB) = 0.96 for water. Now we have a
- IR and y = i - B so that

'y = a + IR -IB. (12)

Since k (X) = 1 for the common rainbow we have from
Eqs. (10), (11), and (12) for the polarized rainbow

k(x) = Am 2 /Am, = (y + e)/cos3(IB - RB)

(1 + /n2)=
Cos3 (IB - RB)

leads to

with

Remembering that x = ax cosIR (2) this

) 1.77 ( + x), (13)
a cosIR

Fig. 3. The intensity distribution as a function of angle for the
rainbow at both polarization directions, for 27ra = 150OX. This cor-
responds to a droplet radius of about 0.14 mm in visible light. The
differences in locations of the supernumerary rainbows can be clearly
seen from the graphs. Curve (a) represents the common rainbow,
curve (b) the polarized rainbow, corresponding to the E vector tan-
gential and radial with respect to the rainbow, respectively. The
formulas used are given in the figure. The intensity scales are com-

parable. 0 denotes the scattering angle; OR the rainbow angle.

Airy intensity distribution. For the polarized rainbow,
however, k (x) depends strongly on x. This dependence
can be calculated from the reflection formulas of Fres-
nel. Since we are interested in the intensity distribu-
tion of the polarized rainbow with respect to the com-
mon rainbow we have to consider these formulas for
both directions of polarization.

Let Am be the amplitude of a wave after one internal
reflection and two refractions (as for the primary rain-
bow) and take the amplitude of the incoming wave as
unity. We use the symbol Am 1 for light with the E
vector perpendicular to the plane of incidence. Am2
refers to light with this vector in the plane of incidence,
as for the polarized rainbow. Then

Am, =- _ sin2(i - r)l sin(i - r)
sin2(i + r) sin(i + r) I

Am2 = [1 _ tan2(i - r) tan(i - r) (8)
[ tan2 (i + r)l tan(i + r) )

Notice that Am2 changes sign if i + r passes 90 0, i.e.,
if i passes the Brewster angle 1B (Fig. 2).

For rainbow light the angle of incidence of the Des-
cartes ray IR is close to IB, while tan IB = n. We de-
fine

xo = a(IR - IB) cosIR. (14)

Substituting this in Eq. (7) and putting

2-rxOfd _ 2whx 3

X -rn 3a 2 A /3u
3, (15)

we find for the common rainbow the Airy expressions

A = 2 4' Cos(/ 3 U
3

+ zu)du ah) 1

E27r ( ) Ai(z) (16)

B =

and for the polarized rainbow.

A = 2 - 1.77a COSIR(IR-)f CoS('/3U3 + zu)du-(a--1
a cosIR ° 27rh

= 2 1.77(IR -IB) Ia Ai (z)

1.77 r ' fa 
2
\2/3

B 2 o u sin(1/3 u3 + zu)du i-)
a coslR J° ~2rhj

1.77 la2
A\2/3

= -2r I-I Ai'(z)
a cosIR \2whI

with
I)

(17)

~47r2a2 1/3

Z = h 2 d. (18)

If we postulate the intensity distribution for the com-
mon rainbow to be (arbitrary units)

Intl = [Ai(z)]2 , (19)

then, according to Eq. (5), the polarized rainbow has the
intensity distribution

nt2 = [1.77(IR - IB)Ai(z)12 + h) |a co1R Ai'(z) 2, (20)
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which is the final expression for the intensity distribu-
tion of the primary rainbow in both polarization direc-
tions. For water (n = 4/3) and visible light (A = 0.6 gm)
this reduces further, expressing the droplet size in mm,
to

Intl = [Ai(z)1 2 i 0.232a-2/Ai(z)1} (21)
Int 2 = 0.0376[Ai 2 (z)] +

where z = - 4.92a2/3 0 d if Od is expressed in degrees.

1II. Applications

A. Supernumerary Rainbows

Figure 3 represents the intensity distribution for both
polarization directions of a rainbow with n = 4/3 and
27ra = 1500X, corresponding to a droplet radius a of
-0.14 mm in visible light ( = 0.6 Mm). The same sit-
uation has been calculated numerically,2 using the
complex angular momentum theory, yielding almost the
same curve. Apparently, not only the Airy theory it-
self,2 5 but also our extension can be applied at least
down to such small droplet radii. Figure 3 shows clearly
the differences in locations of the maxima for both po-
larization directions. This shift remains present for
much smaller droplet sizes,4 2 where Airy's theory gives
qualitative information only.5

From our formulas, it is easy to calculate the upper
limit of the droplet radius where the maxima and min-
ima are interchanged for the two polarization directions.
For this, we use

'Ai(-z) r- 1/2z-1 /4 COS(2/3 Z3/2 - 7r/4)
Ai'(-z) 7r-1/2zl/4 sin(2

3 Z3 /2 - r/4) (22)

These approximations already hold well for z > 2.
Notice that Ai 2 (-z) is zero where Ai' 2(-z) shows a
maximum and vice versa. Substituting (22) in (21), we
have for the oscillating part of the intensity distribution
for the polarized rainbow

Int2 = 0.03767r-lz-1/2[1 + (0.232a-2/3 z-1)
sin-2(Z3/2- 7r/4)]. (23)

Thus, if

0.232a-2/ 3 z - 1 > 0, (24)

the oscillations of the polarized rainbow are in phase
with those of Ai'2 (z) and thus out of phase with those
of the common rainbow. Taking z _ 3 as a represen-
tative value (Fig. 3), this means that for a > 0.6 mm the
oscillations in the intensity distribution for both rain-
bows are in phase and for a < 0.6 mm out of phase. If
we further assume the oscillating character of the
polarized rainbow to be only visible if its intensity at a
maximum is at least twice that of an adjacent minimum,
we find a > 1.7 mm and a < 0.2 mm, respectively.

From Sec. II it is clear that the droplet radius below
which the oscillations are out of phase depends strongly
on IR - IB, i.e., on the index of refraction n. The most
extreme case is for IR = IB, i.e., if the Descartes ray re-
flects at the Brewster angle. This is the case for n = V
(Ref. 7). Then, the intensity distribution of the pola-
rized rainbow is only proportional to a"213Ai'(z) 2 and

maintains its out of phase character for any droplet size.
For water, n is so close to V2_ that this behavior is al-
ready present for a relatively large droplet radius.

The formalism of Sec. II is also applicable to the
common rainbow, if one wishes to introduce the varia-
tion of the reflection coefficient with i. This is lacking
in the Airy theory itself. Then for the common rainbow
one obtains also an intensity distribution Intl Ai 2 (z)
+ CAi' 2 (z), but here the constant C is small. Therefore
Ai'(z) never becomes the leading function in this ex-
pression and represents only a small correction to the
original Airy formula. This second term, however,
causes the minima to be nonzero, in agreement with the
findings of numerical calculations. 2 Finally, the weaker
secondary rainbow (formed after two internal reflec-
tions in the drop) can be calculated along the same lines
that we did for the primary rainbow. However, here IR
- B is much larger, so that deviations from the Airy
formulas are less pronounced, even for the polarized
rainbow.

For the secondary polarized rainbow, the main
characteristics are given by Int 2 c Ai 2 (z) + CAi" 2 (z);
for n = (reflection of the Descartes ray at the
Brewster angle) onlynt 2 cc Ai" 2(z) remains. However,
since Ai"(z) = zAi(z), the oscillations of the polarized
rainbow remain always in phase with those of the
common rainbow, which follows also from the simple
argument 5 mentioned in Sec. I.

B. Degree of Polarization

In geometrical optics, the ratio R = Int 2 /Intl can be
easily calculated for the Descartes ray, yielding R =
0.039 for the primary rainbow. 7 Putting z = 0, we find
for rainbow scattering in the angle of minimum devia-
tion from Eq. (21)

R = 0.0376 + 0.00465a- 2 /3, (25)

which gives R = 0.0376 for a - . This is close to 0.039.
However, R increases with decreasing a and is already
0.054 for a = 0.14 mm. Apparently, if IR is close to IB,
geometrical optics cannot be used for calculations of R
(see Ref. 7), since in that case the contributions from
other parts of the wave front to scattering at d = 0
cannot be neglected, always causing a higher value of
R.

For small a, it makes sense to consider the ratio R of
the maxima in the intensity distributions rather than
for d = 0. Taking for the common rainbow z = -3.25
and for the polarized one z = -4.08 as representative
maxima (both can be considered as a first supernum-
erary bow), we find from Eq. (21) that

R = 0.0087a- 2 /3 Ai'(-4.08)/Ai(-3.25)j2 = 0.032a-2/3, (26)

which has even a value of 0.12 for a = 0.14 mm. For
such small droplets, the polarized rainbow is thus much
easier to observe than one would infer from geometrical
optics. Although our formalism gives for fog qualitative
information only, in this case2 the polarized rainbow and
the shift of its supernumerary bows can be expected to
be visible in nature.
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IV. Conclusion

In this paper it has been shown that the intensity
distribution function of the rainbow for both polariza-
tion directions can be obtained from Airy's equations,
if the variation of the amplitude of light along the wave
front is taken into account.

This yields a simple analytic expression for the in-
tensity distribution of light near the rainbow angle,
which compares well with results obtained, by more
complicated theories. For the primary rainbow the
locations of the supernumerary maxima and minima are
interchanged for both polarization directions; an upper
limit of the droplet size is calculated where this behavior
remains present. The degree of polarization of the
rainbow is less than expected from simple geometrical
optics, indicating that the out of phase character of the
supernumerary rainbows for both polarization direc-
tions will be visible in nature, probably at best for fog
bows.
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Books continued from page 1960

article by P. E. Anuta, who also discusses the application of fast

Fourier transform (FFT) techniques to cross-correlation in order to
determine spatial distances. This author also presents a method of
achieving translational, rotational, and scaling corrections between
images. However, cross-correlation requires the use of normalized

correlation surfaces, and the FFT method can only be applied to the

nonnormalized part. The memory requirement of this technique
may also render it infeasible for large search areas (size larger than

256 X 256 pixels). Procedures other than correlation are considered

in the next two articles, respectively by D. I. Barnea and H. F. Sil-
verman, and by W. F. Webber, the so-called sequential similarity

detection algorithms (SSDA). Indeed, aside from tradition and
expediency, there is no justification for using correlation to solve all

digital registration problems. Algorithms that have selectable dis-

tance measure properties and lower computational complexity are

proposed and illustrated in the case of translational imagery. An

affine transformation is discussed and illustrated by R. A. EImmert
and C. D. McGillem. Alternatively, W. K. Pratt proposes a linear

spatial preprocessing of the images to be registered by utilizing the
spatial correlation with each image prior to the application of a cor-

relation measure. This is accomplished by extending the correlation

measure to include the statistical properties of each of the images

being registered. This technique appears to provide a considerable

improvement in the detectability of image misregistration. C. D.
McGillem and M. Svedlow propose using concepts derived from

statistical estimation theory. Specifically, the error variance in the
registration of two different images of the same scene is suggested as

a measure of the overlay quality in a manner analogous to that em-

ployed in a radar system during error determination of the measured

delay time. Two different models based on quite different assump-

tions are proposed and applied to Landsat I; both were found to yield

a variance that is a function of the effective bandwidth of the signal

and the noise, and the signal-to-noise ratio.
Image Enhancement for Manual Interpretation is the subject of

Part 4, organized by P. Anuta. Technology applicable to the manual

extraction of information from an image is here addressed. Im-

provements in this area have resulted from a better understanding

of the human visual response mechanism, restoration and improve-

ment of the data quality, and data enhancement for visual perception

for separating information from background. Early developments

in the Jet Propulsion Laboratory's Image Processing Laboratory are

briefly reviewed by D. A. O'Handley and W. B. Green. These in-

clude removal of geometric distortion and residual image effects, and

applications to biomedicine, forensic sciences, and astronomy. M.

M. Sondhi reviews the digital restoration techniques from the point

of view of space-domain and spatial frequency domain descriptions

of images. These include inverse filtering, minimization of mean-

squared errors, and constrained deconvolution. Image restoration,
mathematically speaking, amounts to the solution of first-kind
Fredholm integral equations for which a large body of literature now

exists. Hence, a wealth of techniques may be available for application

to this particular problem. Digital image processing, in general, is

excellently reviewed by B. R. Hunt, who concentrates upon image

formation and recording processing, digital sampling and image dis-

play, and image coding and restoration. Restorations by use of an

eye-model constraint and nonlinear restoration by maximization of

the posterior density function are also proposed. The structure of
images and its compatibility with the processes used to store, transmit,

and modify them is the subject of a highly interesting exposition by

T. G. Stockham, Jr., who also emphasizes the harmony of density

representation and multiplicative processing with the physics of image

formation. These and other observations are used to present a visual

model which is subsequently used for providing an objective criterion

for image quality based upon that model.
The natural extension of the topic of Part 4, namely, information

extraction by computers as opposed to human operators, is addressed

in Part 5, organized by P. E. Anuta and A. Rosenfeld. The intro-

ductory article by R. L. Lillestrand dwells on techniques for the

detection of changes in images of the same scene by presenting to the

human observer only the changes, as opposed to all the information

contained in the images. To reduce noise in the difference picture

to acceptably low levels, spatial alignment of the various parts of the

image must be highly accurate. The corresponding requirements are

detailed in the contribution. In an excellent article, G. Nagy surveys

the experimental developments in digital image processing prompted

by major national environmental remote-sensing programs. Im-

portantly, it also attempts to identify the value and promise of the
several aspects of current research lines in the field and to assess the

contribution to be expected from them. This is a welcome sobering

note with a plea for the better exploitation of talents and funds
committed to this endeavor. F. C. Billingsley reviews the digital
image processing developed at JPL and discusses briefly the multi-
spectral processing developed at the Laboratory for the Application
of Remote Sensing of Purdue University. These include geometrical

stretching, vignetting removal, enhancement of high spatial frequency

content, etc., which are abundantly illustrated utilizing spacecraft
images. These techniques are shown to have been successfully ap-

plied to images from a variety of sources (biomedical, forensic, time-

lapse photography, etc.), and dramatically illustrated in these several

instances. Applications of pattern recognition techniques to remote

sensing of the earth's atmosphere are subsequently reviewed by K.-S.

Fu. The several recognition techniques can be conveniently classified

in two groups: decision-theoretic (or statistical) and syntactic (or

structural or linguistic). However, as suggested later in this volume

by L. Kanal, too much stress on this distinction hides many simi-

continued on page 1987
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