A GRAPHICAL LOOK AT THE
AIRY INTEGRAL

By J. H. DE BOER

(Department of Mathematics, Catholic University, Nijmegen,
The Netherlands)

and G. P. KONNEN

(Royal Dutch Meteorological Institute (KNMI), De Bilt,
The Netherlands)

[Received 21 January 1980. Revise 15 October 1980]

SUMMARY

As a function of the upper limit s, {3 e¥® dt, where f is real-valued, describes a
curve in the complex plane. This curve may be studied differential-geometrically in
the underlying Euclidean plane. It has arc length s and curvature f'(s) and the
transition to its evolute corresponds to integration by parts. This method js used to

1. Introduction

THE beauty of the rainbow results partially through a drastic reduction
brought about by our eye. The actual physical phenomenon is much more
complicated than what we perceive without aids. At each of its points,
instead of colour and brightness, the physical rainbow has spectral distribu-
tions for the intensities of the two polarization components, the tangential
and the radial ones.

A monochromatic rainbow, caused by spherical raindrops of a fixed size
and a point sun, still has two polarization components. By circular sym-
metry, in order to specify a point of the rainbow on the celestial sphere, we
need only consider the angle x measuring the arc distance from the centre of
the rainbow. In (4) we gave the Airy theory for the intensities of the two
polarization components. They were called the common rainbow and the
polarized rainbow, since the radial component is weak compared to the
tangential one. Applying a linear approximation to the intensity distribution
along the wave front emitted by a raindrop, one finds that the resulting
intensities for the two components are certain R-linear combinations of
Ai(x)? and Ai' (x)2. Here Ai(x) is the Airy function, Ai’ (x) its derivative
and x is expressed in terms of the radius of the raindrop and the
wavelength; moreover, by shifting its value, x is taken to be zero on the
Descartes position, i.e., the position of the rainbow according to geometrical
optics. The function Ai (x) is oscillating for x <0; this explains the so-called
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supernumerary bows: the subsequent maxima of intensity beyond the first
one. |

Bricard (2) reports on his observations of rainbows that were produced by
a monochromatic searchbeam on fog and were observed through polarizing
film. He noted that the maxima of the polarized rainbow alternated with
those of the common one. The fact that Ai (x)? dominates in the expression
for the intensity distribution of the common component and Ai’ (x)* in that
of the polarized component, explains Bricard’s observation. The oscillating
character of Ai(—x) and Ai' (—x) for x>0, is indicated most clearly
through the well-known asymptotic approximations in terms of cos and sin
for x — oo;

Ai (—x) = 7 x ¥ cos Gxi—1m)+ O(x7),
Ai’ (-x) = 7 ix}sin Gx3—1m)+ O(x 7).

However, in the case of rainbow observations, x is not large. This raises the
question of how good the approximations still are for moderate values of x,
say x =2. The question is also of interest in other applications of the Airy
function, such as to radio propagation or to quantum mechanics and tunnel-
ing (see for instance (3), Ch. 15 and (§), section 5.13, respectively). We shall
give error estimates, here, which allow one to conclude that down to x =2
the approximations are good enough for the purposes described above.

Our method is based upon the differential geometry of the plane curves
that correspond to integrals of a phase function in the same way that, in a
special case, the Cornu spiral corresponds to the Fresnel integral.

We present a few words about our notation, which will require some
goodwill. Mostly the letters in the formulae designate functions. For in-
stance, if C is a curve embedded in R?, with arc length variable s measured
from a point A € C, we consider C as a 1-dimensional manifold, on which s
is a coordinate function. Let a be the direction of the curve, by which we
mean the angle from the horizontal direction to the direction of the curve.
Then « is a function on C and a(s)=acs™! is a function on an R-interval.
The curvature is k = da/ds and we have, for the function a,

a= f K ds (or a(s) = [: K(Sj ds)

In this seemingly heretical expression the same function s occurs both in the
differential form «ds and as the upper boundary. A substitution of a
particular value s, for s takes place only in the upper boundary; thus

| a(so)=A[:oxds. |
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2. Approximation of the Airy function
The integrand of

I ” eif(s) ds,
0

where the phase f(s) is a real-valued function of s, is an infinitesimal
complex number, or an infinitesimal vector if the complex plane is viewed as
the Euclidean R?, of length ds and argument « = f(s). Hence, the value of
the integral is obtained as the endpoint (for s, — ) of the curve

14
‘
Y

3o
so»L e'’® ds,

the shape of which is given by its natural equation «(s)=f(s), i.e., the
curvature as a function of arc length is the derivative of f.

A well-known case is f(s) = s> where the integral is the Fresnel integral
and the curve is the Cornu spiral, which runs from —(1+i)(w/8)* (for
s=—o) to (1+i)(w/8) (for s = +=). The distance between the two end-
points is .

In the case of the integral

F(x)= L e'dv™ gg,

one has f(s) =3s>—xs, where we shall have to restrict ourselves in this paper
to real values of x. Then the real part of the integral is the Airy integral. The
corresponding curve

Cl . SOHL 0 ei(}ﬂ-—xs) ds,

which depends on the real parameter x, has «(s) =s?—x. For a given x, it
starts off from the origin in the direction of the positive real axis and, like a
roll-tongue, coils up around its ultimate limit point. For the larger negative
values of the parameter x, the spiral consists very nearly of circles and the
limit may already be estimated by the curvature centre in the starting point
s =0. If x passes zero and becomes positive, however, the curve also begins
to coil around the origin.

Now, by stationary-phase philosophy, one should primarily look at the
behaviour of f'(s) =s*—x in the neighbourhood of its zero s=b=x? and a
good approximation is obtained by linearizing f'(s) at this point, which gives
a Cornu spiral C,. This approximation becomes better and better as x grows
larger and larger, and then our curve C, resembles the true Cornu spiral C,
more and more. The almost-Cornu spiral C, starts at the origin for s =0,
whereas the approximating Cornu spiral C, comes, for s =—, from a point
that again may be approximated fairly well by the curvature centre of C,
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a F(x)

T1a-1

Fic. 1. The spiral with the arrow is the image in the C-plane of the graph
of the function

e
x»;L exp i(Gt>—xt) dt
under the projection R XC — C. Also drawn are some curves

s»lL exp i3> —xt) dt
(/3

for fixed values of x.

itself at s = 0. This curvature centre lies on the negative imaginary axis. The size
of the approximating Cornu spiral is known and, if we let the two curves be
parallel at their inflection points, its direction as well. The direction of the
inflection tangent differs by {7 from the direction at the endpoint of C,. The
curvature radius of C, is 1/|s*>—x]|, i.e. 1/x for s =0 and, hence, we let the
initial end of C, be at the point —i/x.

Here is the easy computation for the endpoint of C,. The linear approxi-
mation of «(s) at s=b is 2b(s—b). Since we now take the integral over s
from —o to +o, a shift of the integration variable has no consequence and
only the term 2bs is of importance. The straight distance from initial to
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terminal endpoint of this Cornu spiral is, therefore, (w/b)2. The direction of
the tangent at inflection (s =>b) is f(b) =3b>—b>=—2p>. Hence, since the
Cornu spiral starts at —i/x, it ends at the point

—i/x + mwixde' G2
Therefore,
'F x)/mr=Ai(—x)+i Gi(—x)~—i/mx+ 7 ix !¢+ a5 x>,
For negative x one has, on the other hand, |
F(x)/wm=Ai(—x)+iGi(—x)~—i/lnx as x—> —oo,

Ai(—x) 05

J VY

Fi1G. 2. The Airy function Ai (—x).

\_1

nx

F1c. 3. The function Gi»(—x).
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One may note that the function F(x) = w{Ai(—x)+i Gi(—x)} satisfies
Y'+xY=-i |

and, hence, that the inflection points of the graph of Gi lie on the hyperbola
x—>1/mx and those of Ai lie on the axes. As

F(0)/7 = Ai (0)+i Gi (0) = (1+i/y3)/3T'(3) =0-355(1 +i/J/3),
F(0)/7 =—Ai'(0)—i Gi'(0) = (1—i//3)/3T3) = 0-259(1 —i/\/3)

are known values, also in the intermediate region around x =0, the two
graphs can approximately be drawn, connecting the asymptotic parts.

3. Error estimate

We now want an estimate for the error of the given approximation for
x >0. We shall denote by s,, p, the arc length and curvature radius of C,
and by s,, p, those of C,, where s,, s, are both measured from the inflection
point; thus s =b+s,. If we bring the two curves into correspondence by
relating points with the same «, this correspondence is a 1-dimensional
variety (in other words, we have 1 degree of freedom) on which s,, s, a, as

well as
1/p, = ky = da/ds,,

1/p; = Kk, = da/ds,,
are functions. Furthermore, one has
a +3b> = bsi+1s3 = bs3,
1/p,=2bs,+s3, s,=-b,
1/p, =2bs,.

We are approximating

F(x)= L eld*—® gg

—ifx + L e'®:? ds,

i.e., we approximate

I e’ ds —[ip,]s-o by L e’ ds,.
0
After integrating by parts, this means that we approximate

j ie’* dp, by { ie' dp,.
s=0

2-—w
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The absolute value of the difference
-4bJ6

|- e doi-p)- | ie" dp,

-0 S
is the total span |5 e do| of a curve with arc length variable
o=b2+p,—p, for s=0
and
o=—p, for s,=<-1b./6,

and phase «, where we have added the term b~2 in order to put, somewhat
artificially, the two pieces together.

This curve spirals, once again, towards its endpoints. The total length of
this correction spiral is b~2; hence

|F(x)+i/x — wix~ie' ¢+ < x1,

In order to improve upon this, i.e., to obtain a better estimate for the
distance of the endpoints of such a correction spiral, we formulate the -
following:

LeMMA. Let k(s), defined on [0, c], be posmve and monotonically increasing.
Put »

a(s)= ‘[: k(s)ds, g(s)= f e'>® ds

and R(s)=1/x(s). Then (i) |g(c)|<[s].-2; (i) |g(c)|=<2R(0).

Proof. (i) Consider the curve drawn at distance a =[R],-, parallel to the
spiral for 0 <a <2; this parallel curve ends with curvature radius zero, cf.
Fig. 4. One has r<arc AM+ MB, hence CD =r+a<arc AM +2aq, whereas
[s],-,=arc CE =arc AM +2a.

(ii) Starting from any point, say s =0, let the parameter s increase. Then
the infinitesimal change of the curvature circle consists of a rotation and a
shrinkage inside itself, since the curvature radius decreases.

Similarly, if «(s) is given on [c,, c,] and 0€[c,, c,] is an inflection point of
a(s) such that |k(s)]=R(s)™! increases to the right and to the left of this
point (thus the graph of a(s) becomes steeper and steeper on both sides; we
will call it a shallow inﬂection point), then |g(c,)—g(c)|<2R(0). Hence,
if one puts R(O)=R, |sl.-2=A, |sl.-—2=B, then |g(c))—g(c))l=<
min (2R, A + B). In case a =2 (or a =-2) is not reached, we take the total
length |c,| or |c,| for A or B.

In applying this lemma to an arbitrary-curve, where its dlrectlon a is given
as a function of the arc length o, we divide the graph of a(co) into segments,
which are separated by the extremal points and the inflection points, so that
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F1G. 4. This supports the argument of the lemma. The arc CE is part of a given

curve and the circle is its curvature circle at the point E. If the curvature

never decreases along the given curve, its part beyond E will remain within
the circle.

F1G. 5. ‘Shallow’ inflection point of the graph of a function a(s) that gives
the direction of a plane curve as a function of arc length. The figure defines
numbers A and B. ~
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Fic. 6. The function a(c) analogous to Fig. 5, for the case where the plane
curve is the correction spiral, the distance of the endpoints of which has to
be estimated. The Figure defines numbers b,, b..

on each segment the curvature da/do is monotonic. Two adjacent segments
separated by a shallow inflection point can be treated simultaneously by the
2R-method.

To investigate our present a(c), we have plotted a/b> against ob” in Fig.
6. There is one shallow inflection point, namely the fusion point at ob*=
y; =1./6 and one steep inflection point at ob®=y,=0-766. Thus, there are
four segments, of which segment 1 and segment 2 are separated by the
fusion point and may be treated simultaneously by the 2R-method. One has
R=2./6b~%, the value of do/da at the fusion point. Furthermore, the
Figure defines a value b, (from the ordinate of the inflection point) and a
value b, (such that the two indicated horizontal distances are equal). One
obtains b, =1-38, b,=2-17.

For b<b, we have A+B<2R, so that the estimate A+B is more

advantageous. On segment 1, which comes from the incomplete Fresnel
integral, -

a +2b3=(4bp3) 1 =(4ba?)~".
To compute the estimate A on segment 1, we must take a =2, whence

ba?=3/(8b>+24),
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and with the corresponding value of ob?,
Ab*=1J6—ab*=(3/8}{1 - b¥(b>*+3)}}.

For b=<b, we certainly must take for B the full arc length of segment 2,
ie.,

Bb*=1y,—y;=0-15.
On segment 3,
ob?=b%/(s>— b%)+1/2(a/b>+3) +1,
a=3s>—b?s. |

To compute the error estimate A, we must take a+%b*=2, ie.,
b =2/s?—1s, and with the corresponding value of ob?,

Ab?=32—ob*=—b?/(s?+2bs,)—(b*/8) 3.

On segment 4,
ob?=b?/(s>—b?—1/2(a/b>+3)1 +1,
a=1s>—b3s.
0-77
c(b)
0-62
0-29 - —

1 b b,

b

Fic. 7. The error indicator c(b) as a function of b = x! meaning that the
error estimate, in approximating w{i&i (—x)+i Gi(—x)}, by our method is
. c(x?)x74.
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To compute the error estimate A, we must again take a=-%b>+2,
b =2/s>—1s, and with the corresponding value of ab?,

Ab%=gb?—Z=b?/(s3+2bs,)—(b*/8)} +3.

Writing our total error estimate as |error|=<c(b)/b%, we have plotted the
‘error indicator’ c(b) in Fig. 7. It reaches a maximum at b=>b, with
c(b))=0-77. As a consequence

lerror| <0-8b~%=0-8x7%.
(For b =1 we may replace this by |error| <0-602, whereas

gi_ﬂ c(b) =542/24=0-295.)
Summiarizing;

\ L 85 go 4 ilx — mixte'dm | <0.8x% x>0,

4. Further examples

As exercises one may now apply the same method for x <0 and, also,
on the derivative F'(x). The results are as follows (decimal expressions are
rounded off, but in the final inequalities the margin is ample enough for
them to hold precisely):

(i) The error in approximating F(x) for x <0 by —i/x is, integrating by
parts, w
e‘“ds+ilx=i{ e* dp,

=0

=0

F(x)+i/x=[

where a =1s*—xs and p=ds/da. Put x=—b? and plot a/b> against pb>.
There is one, shallow, inflection point, at pb*> =2, a/b> = 16./5/75 = u, say, and
one has two segments, which can be handled simultaneously with the A + B,

2R-method. Writing our error estimate as |error]|<c(b)/b>, we get for
b <1-24, with the A + B-method,

c(b)=yb?
with : '
b>=2{1-3y)y}(1~y) 32—},

where y = 1— pb® runs from 1 to 0-54 and c(b) increases from 0 to 1-04, and
for b=1-24, with the 2R-method,

¢(b) =2R =25./5/54 =1-04,
Thus, uniformly c(b)<1-04, i.e.,

“) e' ¥ ds + /x| <1-04 |x| %, - x<0.

For x =1, the indicator c(1) is <0-7.
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(ii) For the derivative F'(x)= [ e'4**~*)(—is) ds, we put s>=t¢, x = b2 and

have
a=3t8-b%t=(b2+1)}(31,-2b%) with t=b3+1t,,
kK, =2 da/dt =t — b3t}
Analogously to the case of F(x) itself, «,(t) is linearly approximated at ¢t = b2
by k() = t,/b, where we are putting a = —3b>+12/4b. The error in approx-
imating
F(x)=-3i L e dt=—i L e*p, da= —I d(e*)p, = I e dp,,

=0 =0

by

_3i E e dt, = —i r ep, d =-f d(e=)p, = r éa dps,

== —00 =—00 9 =00

consists of two parts:

oo ] —(8/3)12p2
error = I e d(p,—p,)— e’ dp,.

=0 = —00

Here

p1=dtf2da = 8/(t - b?),
p>=dty/2da = bt

Now call p, — p, =0 in the first part and —p, = ¢ in the second part and plot
a/b> against ob. The graphs have the same shape as in the case of F, but the
two parts do not fit smoothly. On the contrary, the curve corresponding to
the difference integral, with arc length parameter o and curvature da/do,
has a cusp in the fusion point. Therefore, the two parts are treated
separately.

The position of the inflection point of a(o) (which is steep) is at
ob?=0-43, a/b®>=0-22. So we have four segments in total and on all four we
apply the A (or B)-estimate. Writing the error estimate as c(b)/b%, we get:

On the segment corresponding to part 2,

c:(b)=Gb*H1-(1+3/p374.
On segment 2 (from fusion point to inflection point),
c2(b) = @Pbi+stb¥(b%—5) "1 - b3Eb>—8)' for b=1-65,

where s runs from 0:64 to 0 and b2=3s+2s* and c,(b)=0-18b% for
b=<1-65.

On segment 3 (from stationary point to inflection point),
ca(b) = b3/22+ (b2 - b21)/(2b—1)-1b? for b=2-09,
with b =2/I>+1/3, | running from 0-22 to 0 and c5(b) = 0-1052 for b <2-09.
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On segment 4 (from stationary point to s/b = x),
cs(b) = (b/k + b¥)/(2b + k) — b3/22 — b3,

k running from 36 to 0 and b =2/k?>—1ik.

In total, c(b) = c,(b) + c5(b) + c5(b) + c4(b) reaches a maximum at b=1-65
with value 1:03 and comes nearly as high at b=2-09 with value 1-00.
Hence,

|F'(x) + iximie!d 7 <1.03x3,  x>0.

For x =0, the indicator c(1)is less than 0-7.
- (iii) A direct confrontation of F(x)+i/x and ix#F'(x) gives the following.
With a =3s>—xs,

F(x)+i/x—ixtF(x) = [” e*ds+ilx—x1 fo e“sds

=i [w e d{(1-x"%s) ds/da}.

=0

Put x=>b? and o =(x"}s—1)ds/da =(bs+b?"1. Plot a/b> against ob2.
There is one inflection point (steep) at ab>=% and there are three segments,
for which method A (or B) is to be applied. We write the error estimate as
lerror| < c(b)/b? and get: |

On segment 1 (0<y=ob%=<3),

c(b)=G—y)b%, with b>=6y%/(y+1)Qy—1)>.
On segment 2 @<y =o0b%<3),

. (b)={%b§ for b=<2-13,
2 G-y)b%, with b2=6y3/(y+1)2y—1)?, for b>2-13.

On segment 3 <y =o0b2<1),

%bg for b<1-63 |
C3(b) = . 2 .. '
(1-y)b}, with b3=6y3/(1-y)(2y2+2y—1), for b=1-63.
The total indicator |
| c(b) = ¢1(b) + c(b) + cs(b)

reaches a maximum at b=2-13 with c¢(b) =1-33 (and comes nearly as high
at b=1-63 with value 1-29); thus

|F(x)+i/x—ix*F(x)|<1:4x7%, x> 0.
For x =1, the indicator c(1) is less than 0-7 and lim c(b)=3v2.
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S. Higher-order approximations

Repeating the process of partial integration and splitting off Fresnel
integrals yields the consecutive terms of the asymptotic expansions given in

(1) and (6):
F(x)~ wixte!& 91 + Six - 28.x 3+ )+

( 1 2! )
+i|—=+=+...) as x—x,
X X

]
F(x)~ i(—%+%+ ) as x—> —oo,

The non-oscillating terms are boundary terms and the oscillating ones come
from Fresnel integrals.

As for error estimates, one obtains for instance the following:

(i) For F(x), x>0, the second step consists of replacing o by o —z%s, and
differentiating with respect to a. This gives a correction spiral with arc
length parameter

28 + 1 S
(s>—1)® 4s3 96s,’

T=—

where the phase a is considered as a function of 7.
With
Fr(x) = wix~te!&

the full length of this correction spiral is 2/6b~*<0-8b~*, where x = b?,
hence,

|F(x)—(1+5i)Fr(x)+ix"1 <0-8x~2.

(One could make a finer estimate, as before; there are 3 segments. But in

the next steps the number of segments grows and so we limit ourselves to
taking the full length.)
The third step consists of replacing v by

L,-10s+2 3 5 385
(s-1)° 8s3 1923 9216s,”

and the total Iength of the correcting spiral is 2b~7, so that
| |F(x)—i(—x"1+2x~%) - (1 +5ix 32— 25x ) Fr(x)| < 2x .
(ii) For F(x), x <0, the second step gives | |
|F(x)+ix~Y<1-04 x|,
the total length of the correction spiral being 23£b~5<1-04b~>, where
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x = —b2. The finer method (3 segments) gives
|F(x)+ix~!|<c(b)/b® with c(b)<4-8 and c()<1.

After the third step one has a correction spiral with total length
226p—-8<2.8b~%, hence, |

|F(x)+ix ™ —2ix~4 <2-8x*.
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