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Polarization and intensity distributions of refraction halos
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By using Taylor expansions, simple expressions are obtained for the deflection of light by ice crystals. With these
simplified formulas, the intensity distributions of halos as a function of scattering angle are calculated analytically
near the halo angle. It is found that the intensity distributions of halos depend on the number of degrees of free-
dom of the generating set of crystals. The differences in the purity of the colors of various types of halo are ex-
plained subsequently on the basis of their intensity distributions. An analytical description of the shape of the
halo or of the halocaustic near the halo angle is obtained also. On the basis of the obtained intensity distributions,
the polarization of refraction halos as a function of scattering angle is calculated, in which both contributions (bire-
fringence of ice and polarization by refraction) are taken into account. It is found that the polarization of parhelia
and tangent arcs shows a strong maximum near the inner edge of the halo over an angular range of 0.10, followed
by a similar maximum of reversed polarization at 0.50 from the first one. The 22° halo shows a less strong maxi-
mum near its edge over an angular range of 0.50. Halos at 460 from the sun also show a strong polarization near
their inner edges, but the direction of the polarization is perpendicular to the polarization of the 220 halo edges.
The possibility for detecting ice crystals on Venus by polarimetry near the halo angle is discussed briefly.

1. INTRODUCTION

Two mechanisms determine the polarization of refraction
halos: refraction of light by the faces of the crystals (Fresnel
refraction) and the birefringence (double refraction) of ice.
The effect of Fresnel refraction has been known for many
years, and the calculation of this contribution to the polar-
ization of halos is simple. However, the resulting degree of
polarization is low, about 4% for the 220 halo group (the 220
halo and its associated arcs and spots) and 16% for the 460 halo
group; only the latter polarization is visible to the naked eye
if it is equipped with a polarizing filter.

On the other hand, the fact that birefringence in ice crystals
contributes significantly to the polarization of halos has be-
come known only recently. It was discovered by accident in
June 1977,1 although the mechanism is quite obvious. Bire-
fringence leads to a splitting of the incident light into two
completely polarized light beams, each generating its own
halo. The direction of the polarization (E vector) of the two
beams is such that they are perpendicular to each other.
Because of the (slight) difference in the index of refraction for
these polarized beams, the halo angle for each beam also dif-
fers. In the case of the 220 halo group, the difference is 0.11°.
This means that a halo consists of two completely polarized
components, which are slightly shifted from each other (Plate
II). At the red inner edge, only one component is visible and
the polarization is complete, but, farther away from the sun,
the polarization decreases because of the overlapping of the
polarized components.2 So, unlike polarization by Fresnel
refraction, birefringence results in a marked structure in the
polarization along the halo.

The calculation of polarization by birefringence is more
complicated than for Fresnel refraction. Since the polar-
ization results from a shift of two polarized halos, the intensity
distribution as a function of scattering angle of the halo has
to be known to calculate the polarization.

Because of the complexity of the halo formulas, exact an-
alytic intensity calculations are difficult. For parhelia, White 3

developed a general formalism and solved it numerically. A
similar approach was used by Fraser and Thompson4 for the
sun pillar. Greenler,5 however, avoided the mathematical
problems by using a Monte Carlo method. With this tech-
nique, he obtained qualitative intensity distributions of many
types of halo. However, none of these authors included po-
larization in his calculations.

On the other hand, for parhelia, polarization has been cal-
culated by McDowell,6 but he restricted the formalism to re-
fraction and reflection effects alone. The deflection of light
by anisotropic prisms has been treated recently by White 7 ; he
presented the halo angles for the polarized components of the
220 halo and the 460 halo.

In this paper, the polarization of refraction halos as a
function of scattering angle is calculated generally, near the
halo angle, taking into account both contributions to the po-
larization. The required intensity distributions for halos are
obtained by approximating the deflection formulas for light
in ice crystals near the halo scattering angle. It is shown that,
with this approach, the intensity distributions of halos can be
expressed in simple analytical functions. A similar technique
has been used for the calculation of the intensity distributions
of rainbows. 8 For halos the derivation is, in principle, also
straightforward, but the number of steps required to reach the
answer is rather high. Therefore in this paper we leave some
obvious steps to the reader.

The intensity distributions that we derive have a range of
validity of at least 50 from the edge of the 220 halo. They can
be used to explain the color distributions and the shapes of
halos and to calculate their polarization patterns.

The sequence of this paper is as follows. Section 2 and
Appendix A define the notation. In Section 3 a classification
of halos is given in terms of the degrees of freedom of the
generating set of ice crystals. In Section 4 the propositions
of our model are defined. In Section 5 the expansion of the
deflection functions is performed, and in Section 6 the in-
tensity distributions and the shapes of four familiar halos are
calculated. In Section 7 the polarization distributions of these
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halos are presented. Section 8 discusses the intensity dis-
tributions, color distributions, and polarization distributions
of halos. Finally, in Section 9 suggestions are made for further
research.

2. NOTATION
No strict convention exists for the notation in halo theory.
Most authors follow in main lines the notation of Humphreys,9
but others (e.g., White3 ) have their own systems. For the sake
of uniformity, we should prefer to take over Humphreys'
system completely, but in our case this is not entirely possible.
The reasons are that our problem encompasses the fields of
scattering theory, polarization, and halo theory and that the
conventional notation in these three fields cannot be com-
bined. We make the following choice. For the polar coor-
dinates of scattered light 0 and 0 are used according to the
convention in scattering theory. Humphreys uses A and S
for his polar coordinates, and Tricker uses A and u. 10 Al-
though, when possible, we follow Humphreys' notation, the
definition of more angles is required for the specification of
the orientation of ice crystals in space, for birefringence and
for the expansion of the deflection functions. Appendix A and
Fig. 1 summarize our notation for vectors, angles, and sca-
lars.

3. DIMENSIONS OF HALOS AND DEGREE OF
FREEDOM OF A CRYSTAL

Ice crystals floating in the atmosphere may be oriented ran-
domly or have a preferential orientation. If a set of randomly
oriented crystals becomes gradually preferentially oriented,
the shape, the intensity distribution, and the polarization
pattern of its generated halos change also.

The orientation of an ice crystal in space is determined by
the three angles i, h, and q (see Appendix A). Thus a crystal
may have maximally three degrees of freedom. This is the
case if the crystals are oriented randomly. The resulting re-
fraction halos are annuli with the sun at center and are called
by Tape' 1 three-dimensional halos. If a preferential orien-
tation reduces the degree of freedom from three to two, the
halo is called two dimensional. If only one degree of freedom
is left, an even higher orientation is present, and the resulting
halo is called one dimensional. Obviously, in this case there
exist two relations between the three angles determining the
orientation of the crystals. The highest orientation should
occur if no degree of freedom is left. Such halos should be
called zero dimensional. In refraction halos zero-dimensional
halos do not exist, but for halos caused by reflection there is
an example. This is the subsun.

Table I summarizes the properties of halos by their di-
mensions and gives some typical examples of them among the
refraction halos.

Degenerate Halos
In exceptional cases the properties of a halo do not follow
Table 1. The most prominent case is the parhelion, a one-
dimensional halo. This halo is also a curve, but this curve is
degenerate since it is folded back on itself.' 2 This results in
a line-shaped halo, oriented mainly radially with respect to
the light source and with a point-shaped caustic at its point
closest to the source. However, such a caustic is in general a
characteristic of two-dimensional halos. It turns out that the
intensity distribution of the parhelia is identical with the one
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Fig. 1. Definition of vectors, planes, and angles. If the position of
the axial vector P of a crystal is fixed in space, the relevant angles can
be defined; d refers to the normal plane of a crystal and shows the
projection of some vectors in this plane. See Appendix A for the
notation.

Table 1. Properties of Halos

Dimension Appearance Typical Examples

0 A point

1 A curve, mainly Circumzenithal and
perpendicular to the circumhorizontal
radial direction from the arc; Parry arcs
sun

2 An area, with a caustic Upper- and lower-
usually toward the sun tangent arcs;

infralateral arcs

3 Annulus with the sun at 22° halo; 46f halo
center and with a sharp
inner boundary
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Table 2. Properties of Degenerate Halos

Dimension Appearance Typical Example

1 A line or a curve with a Parhelia
caustic toward the sun

2 An area of infinitely small Lower-tangent arc
width, causing the halo near the subsolar
caustic to collide with point
itself

of two-dimensional halos (Section 6). A parhelion is called
here a degenerate one-dimensional halo.

There exist also degenerate two-dimensional halos. An
example is the lower-tangent arc near the subsolar point.
Here the degeneration happens because part of the halo area
becomes of infinite small width. Table 2 summarizes the
properties of degenerated halos.

Every type of halo in Tables 1 and 2 has in principle a dif-

ferent intensity distribution and polarization characteristic,
so these characteristics must be calculated separately. In
Sections 6 and 7 this is done explicitly for the most prominent
halos: the circumzenithal arc, the parhelion, the tangent arcs,
and the 220 halo.

4. HALO FORMULAS AND CALCULATION
PROCEDURE

If the orientation (i, h, q) of a given ice crystal is fixed, the
polar coordinates of the refracted light are known according
to the following set of formulas:

D =i+i'-A,

sin = n' sin r,

(1)

sin i' = n' sin r',
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calculation is complicated and should be performed numeri-
cally. To simplify this procedure, we make five assump-
tions:

(1) The variation of the Fresnel coefficients with i and h
is neglected.

(2) Geometric obstructions in the crystals are ne-
glected.

(3) The number of ice crystals is assumed to be equal
along every line of sight.

(4) Only ray optics is taken into consideration.
(5) A preferential orientation is assumed to be realized

completely for all crystals [see Section 8 for the effect of a
departure of this (e.g., vibrating crystals)].

Under these assumptions, the intensity at (solid) angle dw is
proportional only to the number of crystals dN that give rise
to scattering in this angle. Thus

I o dN/dw- (7)

In Section 5, 0(i, h) and 0 (i, h, q) are developed in truncated
Taylor expansions to make possible a formulation of expres-
sion (7) in simple analytical expressions.

5. SIMPLIFIED HALO FORMULAS

From Eqs. (1)-(5) we see that the polar coordinates of light
that is deflected by two refractions in an ice crystal are func-
tions of the crystal orientations:

0 = O(i, h), D = D(i, h),

0 = 0(i, h, q) - q + 0'(i, h). (8)

(n2 
- sin2 h 1/2

cos2 h I

sin 0/2 = sin D/2 cos h,

0 = q + O',

where

cos h sin D
cos 0k =

sin 0

(2) We would like to know the behavior of these functions near
i = im and h = 0. Since im = ih at h = 0, it is convenient to
replace i with a new coordinate,

a = i -ih, (9)

(4) so that the functions are changed into 0(a, h), D(ax, h), and
0(a, h, q). The halo angle is 0 h = 0(0, 0) = D(0, 0), and the
angle of minimum deviation is Dm = D (im - ih, h). We now
calculate the Taylor expansions for D, 0, and 0.

For the deviation function D(a, h), one obviously has

(see Ref. 10, p. 109). (See Appendix A for the definition of
the angles.) In the case of minimum deviation, i = P' = in and
r = r' = rm. Since 2 rm = A, we have from Eq. (1) the relation
2im = Dm + A. Then Eq. (2) reduces to the well-known for-
mula

. Dn +A .A
sin Dm+= n'sinn--

2 2
(6)

The halo angle Oh - Dh can be found from Eq. (6) for h = 0,
which replaces n' with n. Note that 0 = 0(i, h) and 0 =0(i,
h, q). So the scattering angle depends on only two of the
crystal coordinates. We call the functions 0 = 0(i, h) and 0
= 0(i, h, q) the deflection functions for ice crystals.

Specifying the geometry of a crystal and the degree of
freedom in a set of them, formulas (1)-(6), permits the cal-
culation of the intensity distribution, shapes, and polarization
of the resulting halos if one also takes into account the Fresnel
polarization and the birefringence of ice. However, such a

(OD(a, hg = 0
h~O)=O.

(10)

The other first derivative can be found from Ref. 11, Eq.
(7-8)

aD(a, h) dD dn' sin A (n 2 
- 1)sin h

Oh an' dh cos r cos i' n' cos3 h
(11)

which is zero at h = 0.
From Eq. (11), one finds also that 02 D/Oxah is zero at (a,

h) = (0, 0), so that the Taylor expansion to be used be-
comes

D (a!, h) _ D (O, O) + 1/2 (2d D(a, 0) = ag2

+ 1/2 ( 2
D(0, h) )h= (12)

-- D(O, 0) + Cia 2 + C2h2 . (13)

and
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For

C= 1/2 (Dao 1/2

one finds that

= n cos2 rh1 sin ii, - cos 2 ih sin rh

ln COS ih Co0
2 rh

-cos
2 rh (-2 tan ih. (14)

The first expression for Eq. (14) can be found in Ref. 9, p. 503,
if one takes into account that im = ill at h = 0; the last ex-
pression follows from some reductions made using Snell's
law.

From Eq. (11), one finds, using A = 2 rh and Snell's law
again, that

ah2 -O Vdh2 h=o tcos i' cos r/1

n2 - 1 sin 2rh

n cos ih cos rh

n2 -l12sin ri1  n2 -
- = 2 tan ih, (15)

n cosih n

so that the second constant becomes

C2= (I- ) tan ih. (16)

This reduces D (a, h) for small a and h to the desired rela-
tion

D(a, h) = D(O, 0) + C1 a2 + C2 h2. (13')

This approximation can be used to calculate the deviation in
an accurate way up to at least D = 320 for the 220 halo group.
Of course, if D, a, and h are expressed in degrees, the pa-
rameters D(a, h) and D(0, 0) should be multiplied by 1801/r
in Eq. (13').

The relation between D(a, h) and the first deflection
function 0(a, h) is given by

sin[0(a, h)/2] = sin[D(a, h)/2]cos h, (3')

which implies that 20Oa, Olaa2 = a2Da, 0/Coa2 and that [dWa,
h/Oh]h=o = 0. From Eq. (3') one finds also for the second
derivative that

(O20(0, h)) = 2( 2D (0, h))
Oh2  

) =-2 tan [0(0, 0)/21 ± Oh2  h=0'

(17)

So 0(a, h) reduces with the same expansion as expression (12)
to

0(a, h) = 0(0, 0) + Cia 2 + C3h2, (18)

with

C3 -- ) tan il, - tan[0(0, 0)12] - C2 - tan[0(0, 0)/2].

(19)

This formula has an accuracy of 0.50 or better compared with
the exact expressions (1)-(5) at 0 = 27° for the 22° halo
group.
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For the nondegenerate one-dimensional halos, a = a(h),
which urges a further evaluation of Eq. (18) in these cases.
For a horizontally oriented entry face, as in the case for the
circumzenithal arc, the relation between a and h is given in
Ref. 10, p. 119:

cos(a + ih) = sin Z/cos h. (20)

If the entry face is sloped, as is the case for the circumhori-
zontal arc and for several types of Parry arcs, the angle of in-
clination of the entry face should be added to ih in Eq. (20).

We define a = ao for h = 0. Expanding Eq. (20) in a Taylor
expansion again, one gets

sin2 ; -
a 2 sin(ao + ith)

(21)

in which aO + ih = 900 - z in the case of the circumzenithal
arc. Substituting expression (21) into Eq. (18) and neglecting
the h4 terms results in

0(h) = 0(0, 0) + Ciao2 + 1C3 _ ao sin EZ h2

sin(ao + 4h)

= 0(0, 0) + Coa02 + C'3 h2 . (22)

For a 0 = 0, C' 3 = C3, but, for another ao, C'3 may differ con-
siderably from C3 . Since 0(ao, 0) = 0(0, 0) + Coa02 represents
the scattering angle in the solar vertical, it makes sense to
change Eq. (22) to

0(h) = 0(ao, 0) + C'3h2, (23)

which is the ultimate expression for the first deflection
function for the nondegenerated one-dimensional halos, in-
cluding the circumzenithal arc.

The expansion of the second deflection function 0(da, h, q)
= q + k'(a, h) is simpler, since here the first derivatives are
generally nonzero. One has for 0'(h, q) the exact expres-
sion

COS k'(a, h) = cos h sin D(a, h)
sin 0(a, h)

which reduces for small O' to

1 0'2 (a, h) { h2
% sin D(O, 0) + cos D(0, 0)dD1

2 2 sin 0(0, 0) + cos 0(0, 0)dO

- [1 + cotan 0(0, 0)d0]

X [1 - cotan 0(0, 0)d0j.

(5')

(24)

Inserting dD = Cia 2 + C2h2 and dO = Cia 2 + C3h2 leads
to

1- ' 2(2, ) 1 - [1/2 - (C2 - C3)cotan 0(0, 0)Jh2,

(25)

which implies that 0'(a, h) is in first approximation inde-
pendent of a.

Using Eq. (19) for the relation between C2 and C3, one gets
finally, for the behavior of b' for small a and h,

(26)0t(h) = tan[0(0, 0)/21h,

so that the second deflection function becomes
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0(h, q) = q + tan[0(0, 0)/2]h. (27)

If the axial vector P is horizontal (which is the case for the
tangent arcs), we find along similar lines, starting from Ref.
10, p. 110, that

0(h) = ttan[0(0, 0)/2] ± tan 2jh = C4h, (28)

where the plus refers to the upper arc and the minus to the
lower one. For the sake of simplicity, we chose in Eq. (28) 0
= 0 for both the upper and the lower arcs in the solar vertical
(h = 0). Note that for the lower arc, C4 = 0 at a solar elevation
Z= 1/2 0(0, 0), indicating one of the rare singularities of this
arc at the subsolar point, which results in the curious shape
of this arc in this region.' 1 ",2

For the one-dimensional circumzenithal, circumhorizontal,
or Parry arcs, one finds in the same way a slightly different
expression for the second deflection function:

M(h) = Itan[6(ao, 0)/2] i tan 11h = C'4h, (29)

in which the plus again refers to the upper arcs.

6. INTENSITY DISTRIBUTIONS AND SHAPES
OF HALOS

Formulas (13), (18), (23), and (27)-(29) permit the calculation
of the intensity distributions of all types of refraction halos.
Under the assumption in Section 4, these intensity distribu-
tions are given by

I(O) = dN/dw, (7')

where I(O) is in normalized units and where N represents the
number of crystals giving rise to scattering in a (solid) angle
element dw at position (0, 0). In general, dw = sin 6dOdk, but
for one-dimensional halos dw is also one dimensional. Since
N also differs for all types of halo, formula (7') had to be
worked out separately for these cases.

When the intensity distribution I(O) is known for a point
source, it is possible to obtain a more realistic intensity dis-
tribution 7(6) by integrating I(O) over the solar disk. Basi-
cally, this is done in the solar vertical (o = 0), since it can be
shown that there the shape of the nondegenerate halo or the
halo caustic under consideration is almost a straight line on
the scale of the solar disk, being perpendicular to the solar
vertical. Then the integration is found by

7(°) = 2 x(J+s I(y)g(y - )dy,
71 SJmax(°h,0-s )

Circumzenithal Arc
For a nondegenerate one-dimensional halo, there exist two
relations between i, h, and q. Specifying one of these angles
is therefore sufficient to fix the orientation of generating
crystals in space. We choose h for this. Since the halo is an
infinite thin line t in the firmament, Eq. (7) becomes

1(O) = dh/dl. (32)

If Eq. (23) is substituted into Eq. (29), the shape of the line
is given by

6 - 6(ao, 0) = C13 'k2 - C'502,
C /24

(33)

in which for C4 the plus must be applied. Formula (33) shows
that the departure of the circumzenithal arc from a circle
around the sun with radius 0(a 0, 0) is a smooth parabola. This
is indeed the shape of the circumzenithal arc near the solar
vertical. The length of a line segment of it is given by

d[ (do 211]2 [do 2 12(d6]ddl = Isin2 6+ -I do O_1in (ao, 0) + d do[sin 0d J

= [sin2 6(ao, 0) + 4C'250 2]"/2 do, (34)'

so that the right-hand term of Eq. (32) becomes, by applying
Eq. (29) again,

dh dh do 1 1
dl dk dl C'4 [sin2 0(ao, 0) + 4C' 2

5 0 2]1/2
(35)

Taking into account the infinite small width of the halo, this
leads to

I (6) = 5[o - O(ao, 0) - C' 5 02]

C'4 [sin 2 O(ao, 0) + 4C'2 50 2]1/2
(36)

where 5(x) is the Dirac delta function'3 and the constants
depend only on the solar elevation. On the solar vertical, this
reduces to

I(O) = 5[0 - 0(ao, 0)], (37)

where AM() is in normalized units. The intensity distribution
1(0) for a finite sun in the same units can be found from Eqs.
(30) and (37):

7(6) =2 [y- 0(ao, 0)][S2 - (y -0)2]/2dy
rs2

= 2{S2 - [6P- 0(ao, 0)]211/2.
7S2(30)

where g(X ) = (S 2 - X 
2

)1/
2 represents the shape of the sun and

s = 0.25° is the semidiameter of the solar disk. Because of the
factor 2/(7rs2 ), I(6) and 7(0) can be expressed in the same
units.

In the case of the parhelion, which is basically a radially
directed line, the integration has to be performed along a line
segment of the sun, so that Eq. (30) reduces to

(38)

This intensity distribution is essentially an ellipse centered
at 0 = 0(a, 0) and is shown in Fig. 2.

Parhelia
This degenerate one-dimensional halo represents a mapping
of a in D. The degeneration occurs because h = z for any a,
so that the orientation of a crystal can be specified only by a
but never by h or q. For parhelia Eq. (7) is represented by

I ()1X+s
2s= s o I(y)dy.2s J max(Oh,O-s) (31)

We now discuss the intensity distributions of the circum-
zenithal arc, the parhelion, the tangent arcs, and the 220
halo.

I = da/dD. (39)

For simplicity, we restrict ourselves to z = 0; for other solar
elevations essentially the same formulas can be obtained since
D(a, h) - D(O, 0) = Cja2 + C2h2 [Eq. (13)] reduces to D(a,

)- D(0, 0) - C2 2 = D(a, 0)-D(0, Z) = Ca2. Of course,

G. P. Konnen
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be found by making the denominator of Eq. (44) zero, which
results in a parabola, as was also the case for the circumzeni-
thal arc:

0- Oh = C5t2C =2 0 .
C4 2

(45)

Intensity
(orb u~nita)/

°0.4* t .0 5 10-

halo-edge e O(a O

Fig. 2. Intensity distribution of the circumzenithal arc as a function
of scattering angle 0 in the solar vertical for a finite sun. 0(ao, 0)
denotes the position of this halo for a point-shaped sun.

for z d 0 the intensity distribution of the parhelion should
be measured along the solar almucanter instead of along 0=
E90 0 .

For 2; = 0, one has h = 0 and D (a, 0) = 0(a, 0), with 0(!, 0)
- 0(0, 0) = Cia2. Inserting this into Eq. (39), one finds, re-
placing 0(0, 0) with 0h, that

(0 - Oh)1/2'

Since C4 = [tan(Oh/2) d tan 1] [Eq. (28)] and the minus
stands for the lower-tangent arc, the expression indicates also
that, for every refracting angle A, the parabola of the lower-
tangent arc is sharper than the one for the upper-tangent arc.
Of course, for C4 = 0 the expression breaks down, but away
from this point the parabola is sufficiently smooth to calculate
7(0) from Eqs. (30) and (44) for 0 = 0, resulting in

2 -°+s [S
2  

- 0)211/2

0 S= max(Oh,O-s) [ -h (46)

This integral cannot be expressed in elementary functions
and should be solved numerically. However, the result is close
to the one for parhelia, as can be seen in Fig. 4.

(40) 1
Intensity
barb -nitsl

where l(0) is again in normalized units. The integration over
the solar disk according to Eq. (31) results in

I(0) = -(°-010 + s)/ 2,

parhelian
-- pint source
-finite sun

-s < 0 - 0O < s,

I(0) I-[(°-Oh + S)112-(O-Oh -S)1/2], 0 -0 h >S,
S

(41)
I(0) and I(0) being in the same units. The resulting graphs
are shown in Fig. 3.

Tangent Arcs
For two-dimensional halos, dN can be closely approximated
by dN a dadh for the relevant part of the generating set of
crystals. Furthermore, dwo = sin OdOdok sin OhdOdt near
0 = 0,0, which is our range of interest. If one takes sin Oh as
a constant, Eq. (7) becomes

1(0) =dh da = I da
dokd0 C, dO

(42)

since a does not depend on h. Combining Eqs. (18) and (28),
one gets

0(a, h) = 0, + Cia2 + C3 t2 = a0, + C1a2 + C502. (43)
C4 2

If Eq. (43) is inserted into Eq. (42) and the units are changed
so that Cl = C 4 = 1, the intensity distribution becomes

'I(O) = 1 (44)(0 - 0,h - C502)1/2'(4
which is at ( = 0 (h = 0) identical to the intensity distribution
of a parhelion [Eq. (40)].

The shape of the caustic of the tangent arcs near 0 = 0 can

halo-edge

0f
oeh

0.5' 1.01

Fig. 3. Intensity distribution of a parhelion as a function of scattering
angle 0 for a point source and for a finite son. Oh denotes the halo
angle. The figure refers to zero solar elevation, but for another solar
elevation the intensity distribution is the same.

Intensity
(orb units)

tangent arc
-- point source
-finite sun

?1l. -'
g5*1.0*

Fig. 4. Intensity distribution of a tangent arc as a function of scat-
tering angle 0 in the solar vertical for a point source and for a finite
sun. Oh denotes the halo angle.

Since the main purpose of this paper is to find the polar-
ization of prominent refraction halos, we will not discuss the

G. P. Konnen
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rather complicated calculation of the lower-tangent arc near
the subsolar point (or of other rarely observed phenomena)
in detail. We only mention the fact that in our expansions
the shape of a lower-tangent arc for 21 = Oh is given by

(0 - Oh) _ 02/3, (47) 1
Intensity

which thus represents a close description of Szlavik's famous
picture of the lower arc at a solar elevation of about 110 (Ref.
10, plate IV.2).

220 Halo
Surprisingly, the calculation of the three-dimensional halo
is quite simple. We first treat the second deflection function
0(h, q) and choose a fixed t, say, k = 0. Since random or-
ientation is present, all values for a, h, and q are realized in
the cloud of ice crystals, but formula (27) shows that only the
subset la, h, qi = la, h, -tan[0(0, 0)/2]hl contributes to scat-
tering in 0 = 0. So, if one chooses a fixed h = ho, there is al-
ways one and only one element q0 present in the set of Iq} that
gives rise to scattering in a fixed 0 = 00. Since Eq. (27) indi-
cates a linear relationship between ho and q0, this property
means that, for deriving the intensity distribution of halos
generated by randomly oriented crystals along a fixed 0 = X0,
we have to consider only the set la, hi, treating the second
deflection function 0(q, h) = /0o as a constant. Therefore, for
the 220 halo, the first deflection function

O(a, h) = Oh + Cja 2 + C3 h2  (18')

is the only one that has to be evaluated. This function rep-
resents a paraboloid. The number of particles N that gives
rise to scattering at angles below a fixed 0 can be represented
by the area of an ellipse in the (a, h) plane, which contains all
pairs (a, h) with this property. This is the area size of an el-
lipse [Eq. (18')] for O(a, h) = 0. Calculating from Eq. (18') the
length of the two axes of the ellipse, one finds that

N- K r 0- C -° -Oh
(ClC3)1/

if 0- Oh > 0,

N= 0 ifO - Oh <0- (48)

With dwo = 27r sin OdO and 0 Oh = constant, the relevant part
of Eq. (7) along every curve 0 = constant becomes

1(0) = dN/dO, (49)

so that the intensity distribution in normalized units is given
by

1(0) = H(O - Oh), (50)

where H(x) is the Heaviside step function,'3

H(x) = 1, x > 0,

H(x) = 0, x < 0. (51)

Integrating over the solar disk again, one obtains from Eq.
(30)

1 . 0 - h 60 Oh 2- O)21270() = 1/2 + -arc sin + 2 [S -(0-Oh) 2]'/,

7(O) = 1, 0 -Oh > S.

The resulting plots are given in Fig. 5. It should be noted that
Eq. (50) can also be obtained by integrating the intensity

-0.4'

22 halo
-- point source
-finite sun

td
hal-edge

so
e-eh

0.5 1.0o

Fig. 5. Intensity distribution of the 220 halo as a function of scat-
tering angle 0 for a point source and for a finite sun. Oh denotes the
halo angle.

distribution of the tangent arc [Eq. (44)] along (p since the 220
halo can be considered the superposition of a tangent arc that
rotates around the sun.'"

7. POLARIZATION DISTRIBUTIONS OF
HALOS

The two contributions to polarization of refraction halos are
Fresnel refraction and birefringence. We treat them both in
this section, but first we give some general remarks and in-
troduce some new definitions.

Since birefringence leads to different halo angles for the two
directions of polarization, it is not useful to express the po-
larization distributions in 0 - Oh anymore. Therefore we
change the scattering coordinate into 6 - Oedge, where Oedge =

h- s for the polarized component closest to the sun.
Because polarization by birefringence results from a shift

of two polarized halos, it is also not convenient to describe the
polarization distributions in terms of the degree of polariza-
tion P. We choose here to express them as I, - I2 = Ipol,
which represents the quantity of polarized light. From this
the degree of polarization P may be calculated by

' polP = I2+I
11 + '2 + IB

(53)

where 'B is the intensity of a background. Of course, near
Oedge, P = 100% or P = -100% for IB = 0, since either I, or I2
is zero because of the shift between the polarized halos. If P
< 0, the electrical vector of the polarized light is in the plane
of scattering. In that case, Ipol > 0.

Fresnel Refraction
In this approach we consider the Fresnel-refraction contri-
bution to the polarization for a given halo to be constant along
0. In the angular region of interest to us, this is a good ap-
proximation. So we can restrict ourselves to calculating the
relative intensity of I, and I2 at the halo angle Oh [- 0(, 0)],

-S < 0- Oh <S, (52)

which is given by the ratio of the Fresnel coefficients for two
refractions:

Us . . .' . . . . . . I I
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[= tan 2(i, - ] [ sin2(i, - r,]) -2
tan2 (il, + rl,) sin2 (il + rh)]

After some goniometric manipulations, and keeping in mind
that ill - ri, = Oh/2, this reduces to

I11/2 = cos- 4(01,/2). (55)

For the 220 halo group 11I/2 = 1.077, and for the 460 halo
group II/I2 = 1.39, which corresponds to degrees of polariza-
tion of 3.7% and 16%, respectively. It should be noted that
the approximation I1/I2(0) - I1/I2(0h) that we apply here is
better for the one- and two-dimensional halos than for the
three-dimensional ones since for the latter a skew transfer of
light through a crystal (h # 0) causes a relatively quick de-
crease of 111 - I211 as a function scattering of angle.

Birefringence
The transfer of light through an anisotropic prism has been
calculated for the most general case by White.7 Of course, for
the ordinary refracted rays (subject to an index of refraction

circumnenithat arc

tP .1
Pot

arb.units)

x Fresnel

01 0.5* 10.*
a 8edge

Fig. 6. Quantity of polarized light Ipol = I'-12 for the circumzeni-
thal arc as a function of scattering angle 0 in the solar vertical for a
finite sun. 0edge denotes the inner edge of the halo. Near Oedge only
ordinary refracted rays contribute to the light of the halo. For
comparison, at the intensity maximum of the halo, Ipol is also given
for Fresnel refraction alone. If Ip> 0, the polarization is in the plane
of scattering.

parhelion

(.rb.units)

I Fresn-l

e-e edge

Fig. 7. Quantity of polarized light Ipol = I1 - I2 for the parhelion as
a function of scattering angle 0 for a finite sun. Oedge denotes the inner
edge of the halo. Near Oedge only ordinary refracted rays contribute
to the light of the halo. For comparison, at the intensity maximum
of the halo, Ipol is also given for Fresnel refraction alone. If !P0 1 > 0,
the polarization is in the plane of scattering.

no), the halo formulas [Eqs. (1)-(6)] remain unchanged, but,
for the extraordinary refracted rays (index of refraction ne),
the resulting formulas are rather complicated. However, if
the birefringence An = n, - no is small, as in the case of ice,
White's formulas can be simplified significantly. It can be
proved that in that case the halo formulas, and therefore also
our formalism, can also be applied for the extraordinary rays
if one replaces in all formulas the index of refraction n with
an effective index of refraction neff, which is given by

neff = no + sin2 y(ne - no) - no + sin2 Dyn. (56)

Here -y is the angle between the light path in the crystal, which
gives rise to scattering at the halo angle (h = a = 0), and the
optical axis of the crystal. For the 22° halo group, y = 900 so
that neff = ne, but for the 46° halo group -y = 450, and thus neff

1/2 no + 1/2 ne*
The angular shift in the intensity distribution of the

polarized components of a halo can be found from differen-
tiating the minimum-deviation formula for h = 0:

tangent arc

poal
Warb. units)

0 e dge \ 4 ~ - -

Fig. 8. Quantity of polarized light Ipol = I- 2 for a tangent arc as
a function of scattering angle 0 in the solar vertical for a finite sun.
Oedge denotes the inner edge of the halo. Near 0

edge only ordinary
refracted rays contribute to the light of the halo. For comparison,
at the intensity maximum of the halo, Ip,,l is also given for Fresnel
refraction alone. If p01 > 0, the polarization is in the plane of scat-
tering.

22' hola

Ipal
(arbunits)

Fresnel

0.51 1..0

Fig. 9. Quantity of polarized light Ipol = Il - '2 for the 220 halo as
a function of scattering angle 0 for a finite sun. Oedge denotes the inner
edge of the halo. Near Oedge, only ordinary refracted rays contribute
to the light of the halo. For 0 -

0 edge > s + 0.110, only Fresnel re-
fraction contributes to the polarization of the 220 halo. For any 0,
the polarization is in the plane of scattering.
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cos Oh 2 d~h = sin(A/2)(neff - no). (57)
2

The birefringence of ice In = 0.0014 (Ref. 14) and is almost
independent of the wavelength for the visible range. This
leads to a difference in the halo angle AOh for the polarized
components of 0.110 for the 220 halo group and to 0.150 for
the 46° halo group.

Since no is smaller than ne, the halo that is due to ordinary
refraction is always closest to the sun. The direction of its
polarization is perpendicular to the optical axis of the crystals.
In the case of the 22° halo group, the optical axes of the con-
tributing crystals are in principle perpendicularly oriented
with respect to any line halo sun. This means that the po-
larization of the inner edge of the halo (where only the ordi-
nary refracted rays are present) is in the plane of scattering.
For the 460 halo group the situation is reversed. So in this
case the polarization of its inner edge is perpendicular to the
component that is due to Fresnel refraction.

The quantity of polarized light for a finite sun becomes

ipol = 7(0 - Oedge) -coS
4 11 P(O - Oedge -0.11),

Ipol = 7(0 - Oedge -0.150) - cos4 230 (0- Oedgc) (58)

for the 220 and the 460 halo group, respectively. For the four
typical halos, these polarization distributions are plotted near
the halo edges in Figs. 6-9. For comparison, at the halo
maximum (0 - Oedge s and 0 - Oedge - 2s for the circum-
zenithal arc and the 220 halo group, respectively), Ipol is given
also for the case in which only Fresnel refraction should con-
tribute to the polarization. This should result in an almost
constant degree of polarization of about 4% for the 220 halo
group and of 16% for the 46° halo group over the whole angular
range visualized in the figures. These data permit the cal-
culation of the degree of polarization P from Eq. (53) as a
function of scattering angle if some background intensity IB
is present.

8. DISCUSSION

Intensity Distributions and Color Distributions
In the previous sections, it was shown that there are dramatic
differences in the intensity distributions of halos of various
classes. For a point source the circumzenithal arc is a curve
of infinite small width, the parhelion is a curve with a caustic,
the tangent arc is an area with a similar caustic toward the sun,
and the intensity distribution of the 220 halo can be repre-
sented by a step function. This means, e.g., that the cir-
cumscribed halo even at high solar elevations can be distin-
guished from the 22° halo by its intensity distribution and
even more clearly, as we see below, by its color distributions.
The above-mentioned properties of the various intensity
distributions can be seen clearly in the plots of Greenler, 5 in
which, e.g., his points of the parhelia are distinctly more
concentrated near the halo edge than the points for the 22°
halo. Moreover, in his plate 3-3, he shows a parhelion for vi-
brating crystals, which means that he added two additional
degrees of freedom to the set of generating crystals contrib-
uting to scattering near the halo angle. Indeed, the resulting
plot resembles closely the one of the 220 halo.5 On the other
hand, Greenler's plots of the 220 halo show a gradually de-
creasing intensity as a function of scattering angle, which is

absent in our graph. This feature, however, is due mainly to
the geometry of the crystal, which has been neglected in our
approach. Handling these geometry factors in the same way
as we did the deflection functions, it can be expected that our
results will fit Greenler's at a larger angular scale. However,
it is not clear if, at a large distance of Oh, Greenler's result is
completely right since he did not take into account that, in the
case of skew incidence, at the first refraction, polarization
takes place, which may result in a lower intensity after the
second refraction.

The color distribution of halos can be inferred from two
properties: the intensity distribution of halos and the dis-
persion of the halo angle with the wavelength of light. In
Table 3 the dispersions of the halo angle are presented be-
tween red (X = 6563 A) and violet (X = 4047 A), where the
indices of refraction for ice are 1.307 and 1.318, respectively.' 4

For comparison, this dispersion for the primary rainbow angle
Or is also included.

The comparison between the rainbow and the halos is of
relevance since the intensity distribution of the former'5 in
the Descartes approach is (0 - 0r)-

112, which is identical with
the intensity distributions that we obtained for parhelia and
tangent arcs. The Descartes intensity distribution becomes
visible if drops of all sizes contribute, so that interference ef-
fects are smeared out. Since the horizontal cross section of
a flattened drop remains a circle, this is the case near the feet
of a rainbow at low solar elevation. In the top of the rainbow,
this is not the case, and the Airy rainbow becomes visible.'6

We now compare the color distribution of different types
of halo with one another and with the Descartes rainbow.
Between the parhelion and the tangent arcs, no essential
difference occurs in the color distribution, since for both the
dispersion and the intensity distribution (for a point source)
are identical. For a finite source, the colors of the tangent arcs
will be somewhat paler, but the appearance of the colors re-
mains similar. Therefore this case needs no further discus-
sion.

When the rainbow is compared with the parhelion, there
is a difference in the dispersion. But since their intensity
distributions are equal, their overall appearance is similar.
Indeed, close inspection of photographs reveals that they are
both characterized by a broad red edge, whereas further away
from the sun the colors are less pure. Because of its larger
dispersion, the mixing of colors at larger scattering angles is
somewhat less rapid for the rainbow, but nevertheless the
general impression of its colors remains close to that of the
parhelion (or to that of a tangent arc).

The circumzenithal arc may display brilliant colors, the
purity of which often surpasses that of the rainbows. This
is due partly to its larger dispersion, but the behavior of its
intensity distributions plays a more crucial role. If integrated
over the solar disk, this intensity distribution for a given color
is concentrated in an angular range of only 0.50 (see Fig. 2),

Table 3. Dispersion of Halos and the Rainbow

220 460 Primary
Halo Halo Rainbow

Difference in halo or rainbow 0.840 2.40 1.70
angle between X = 6563 A
and X 4047 A

G. P. Karmen
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which is much less than its dispersion. Therefore hardly any
mixing occurs among the colors, so they remain extremely
pure. Because of this property of its intensity distribution,
the quality of the colors is even better than that of the sec-
ondary rainbow, although the latter has an even larger dis-
persion (2.90).

In contrast to the circumzenithal arc, the 22° halo is known
for its pale coloring, also as compared with the parhelion.
Indeed, commonly only near its inner edge, a brown-reddish
color is visible. This feature can be explained by its extremely
flat intensity distribution. Because of this, complete mixing
of the colors is already reached when the scattering angle
reaches the halo angle for violet, so the halo becomes white.
For smaller scattering angles, some colors dominate, but only
close to the inner edge of the halo is there some purity. The
width of the part of the halo where some coloring is perceptible
is only 10 or less.

Some years ago Fraser 17 explained the lack of color in the
22° halo by the small size of the generating crystals and the
broad diffraction maximum of such crystals. Although this
effect may also contribute to the paleness of this halo, the flat
intensity distribution is probably the main cause of this fea-
ture.

Polarization
The polarization pattern of all refraction halos shows a
marked structure near the halo angle at an angular scale of
0.10 and 0.50 (the angular width of the sun). For parhelia and
tangent arcs, this structure is rather similar, leading to a sharp
increase in the polarization near the halo edge and a second
maximum with reversed polarization, separated by 0.50 from
the first one. With the naked eye this first maximum for red
light can easily be observed at the inner edge of the halo, but
for other colors it remains hidden because of the mixing of the
colors. For the same reason, the second maximum cannot be
observed either. However, it can be expected that the latter
must be visible with monochromatic filters. Figure 7 shows
that polarimetry is a sensitive means to detect parhelia, since
the polarization at the two maxima are, respectively, seven and
four times stronger than the maximum quantity of polarized
light that should result from Fresnel refraction alone. For
the tangent arcs these numbers are six and three, respectively.
It must be noted that at higher solar elevations the polariza-
tion of parhelia should change somewhat because of the effects
calculated by McDowell. 6

For the circumzenithal arc, the polarization near the red
edge is more difficult to observe since it is somewhat obscured
by the overall polarization of the arc that is due to Fresnel
refraction. A second reason is that the angular separation of
the polarized components is rather small compared with the
dispersion of the halo, whereas at 460 from the sun a rather
strong polarization of the blue sky is present with the same
direction as the one of the inner edges of the halo. Never-
theless, in February 1980 we were able to observe this polar-
ization near the red inner edge of a bright circumzenithal arc.2

The observed direction of the polarization was in agreement
with the calculation.

Although the polarization of the 220 halo near its edge may
exceed the Fresnel polarization by a factor of 4, this maximum
remains weaker than that of the parhelia or tangent arcs. As
far as we know, this polarization has never been observed. It
may be interesting to try this, although the low intensity near
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the edge of the halo makes this polarization more difficult to
observe than for the tangent arcs or the parhelia.

9. CONCLUSION, FURTHER RESEARCH, AND
APPLICATION TO VENUS
Intensity distributions, polarization distributions, and shapes
have been calculated for various classes of halo by using sim-
plified halo formulas. It is found that the intensity distri-
bution of halos depends strongly on the degree of freedom in
the generating set of crystals. The polarization calculations
describe well the observed strong polarization near the inner
red edge of parhelia and tangent arcs but also predict a sec-
ondary maximum of inverse polarization in the polarization
distribution that is unobserved so far. The intensity distri-
butions that we obtained offer an explanation of the difference
in the color distributions of various types of halo. Finally, our
formalism enables one to express the shape of halos in terms
of simple functions.

Although the intensity distributions agree closely with the
ones obtained by Greenler5 with the Monte Carlo method, it
would be useful to compare them with direct observations.
This requires photographs of halos with monochromatic fil-
ters. Unfortunately, as far as we know, no such pictures exist
so far. It will be interesting to take them and to measure the
intensity distributions of halos.

A second intriguing test of the theory is the polarimetry of
halos near their edges in monochromatic light. Such mea-
surements may provide a sensitive test of the theory in-
deed.

The explanation of a halo with unusual radii is not always
completely settled. Measurements of the polarization of their
inner edges may sometimes provide a clue to their explanation.
For an inclination of 250 of the pyramidal faces9 of the crys-
tals, the direction of polarization of the inner edges of the re-
sulting 80 and 170 halos is expected to be perpendicular to the
plane of scattering, just as in case of the 460 halo. The dis-
tances of the polarized components are predicted to be 0.040
and 0.080, respectively. For some other halos, however, no
polarization at the inner edge should occur.

Finally, a challenging project should be a search for ice
crystals on Venus. If hexagonal ice crystals are present in the
upper atmosphere of the planet, a sharp increase in the po-
larization can be expected if Venus passes the halo angle. A
preferential orientation of the crystals, which should lead to
tangent arcs, will result in a larger quantity of polarized light
near the equator of Venus, but, because of the curvature of the
planetary disk, its intensity distribution remains the same as
expected for randomly oriented crystals. Thus the polar-
ization pattern will have a smooth maximum of an angular
width of about 0.740, which is the solar diameter as seen from
Venus. On the other hand, if parhelion-generating crystals
are present, the scattering is concentrated near the poles of
the planet. In this case, the curvature of the disk leads to a
transformation of the intensity distribution into that of the
tangent arcs. This means that two sharp peaks in the polar-
ization will occur at an angular separation of 0.740. The width
of the peaks is of the order of 0.10, which means that Venus
passes through it in only 90 min.

Venus passes the 22° halo scattering angle only when it is
close to inferior conjunction. This happens every 19 months.
The next occasions will be in April 1985 and November 1986,



G. P. Kinnen

approximately. A concentrated search of narrow peaks in the
polarization of Venus that are due to birefringence has still
to be done.'8 It will be interesting to explore these opportu-
nities.

APPENDIX A: NOTATION

Vectors and Planes
0, origin.
S,, unit vector pointing to the sun; thus in the direction of

the incoming light.
92 , unit vector in the direction of the outgoing light (after

two refractions in this case). The projections of 31 and 32 in
the crystal-normal plane are indicated in Fig. Id.

Z, unit vector pointing to the zenith.
N, unit vector in the direction of the solar normal, in the

plane defined by 31 and 2.
Solar-normal plane: a plane perpendicular to 59 through

0. R is in this plane.
Crystal-normal plane: any plane perpendicular to both

refracting faces of the crystal.
P, axial vector. This is the unit vector perpendicular to the

crystal-normal plane (in the case of halos formed by single
external refraction, this vector is the commonly chosen normal
to the reflecting plane).

P', projection of P in the solar-normal plane.
T, unit vector in the direction of the light path in the

crystal.
X, unit vector along the optical axis of the crystal. For the

220 halo group, X coincides with P.
Scattering plane: plane defined by S1 and S2.
Solar almucanter: horizontal plane through the sun.
Solar vertical: vertical plane through the sun.

Angles
A, angle between the refracting faces, so A = 600 for the 220

halo group and A = 90° for the 460 halo group.
0, scattering angle with respect to the sun; thus ZL1t2. This

is A in Humphrey's notation.
X, scattering azimuth with respect to the solar vertical; thus

the angle between the planes S152 and 52.
"Yr 0 - q (see the definition of q below).
h, zP'P. This angle determines the position of the crystal-

normal plane with respect to the sun. Many authors use its
complement, 900 - h -- zPA1, denoting it by 0. In our case,
h is more convenient.

q, 900 - zP'N, angle between the projection of the axial
vector in the solar-normal plane and the crossing line of the
solar normal plane with the horizon.

i and i', angle of incidence at the entry face and angle of
refraction at the exit face, respectively, projected in the
crystal-normal plane.

r and r', angle of refraction at the entry face and angle of
incidence at the exit face, respectively, projected in the crys-
tal-normal plane. r + r' = A.

D, projected deviation; thus the projection of 0 in the
crystal-normal plane.

Di, minimum deviation; this is the minimum value of the
function D(a, h) for a fixed h.

im and rr, i and r at minimum deviation. Here im = P,
r'. = r, it = (D. + A)/2.
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Oh, halo angle; this is the absolute minimum of the function
0(a, h). Oh = 0(0, 0)-

ih and rh, i and r at halo angle.
a, i - ih-
ao, a at h = 0 for circumzenithal or Parry arcs.
A, solar elevation; thus zIS.
s, solar semidiameter, s = 0.25°.
-y, angle between the light path in the crystal and the optical

axis of the crystal; thus y = cliX.
AOh, difference in halo angle between the ordinary and

extraordinary refracted rays.
0 edge, halo-edge scattering angle, which is the smallest value

of oh - s for a given halo, taking both polarizations into ac-
count. This angle represents the scattering angle of the inner
edge of a halo for a finite sun.

Scalars
N, number of crystals giving rise to scattering in a given

solid angle.
I, intensity of the outcoming ray (normalized units).
I, and 12, intensity of the polarization component in the

scattering plane (that is, the plane defined by S1S2) and
perpendicular to it, respectively. I -I + I2-

'pol, quantity of polarized light, I, - I2-
1, I1, etc., the same after integration over the solar disk.

P, degree of polarization. If no background intensity IB is
present, P = -IpoI/* Otherwise, P = -Ipol/(I + IB)-

n, index of refraction. For ice, n = 1.31 for yellow light.
n', Bravais refractive index. n' = [(n2 - sin2 h)/

(cos 2 h)]11/2.
n0 and ne, index of refraction for ordinary and extraordi-

nary refracted rays, respectively.
An= - n0, birefringence of ice. For visible light, n, -

nO = 0.0014.
nfff, effective index of refraction of extraordinary rays, neff

= n0 + sin y(n, - no).
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Plate I. (Alistair B. Fraser, p. 1626). The top
of a rainbow, which shows two supernumerary
bows. © Alistair B. Fraser.

Plate II. (G. P. Konnen, p. 1629). Birefrin-
gence of ice crystals caused a remarkable polar-
ization of the parhelion. Rotating a polarizer
before the eye changes its position with respect " A
to the sun by 0.110 (photographed by A. i .
Tramper). flN


