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Skylight polarization during a total solar eclipse:
a quantitative model
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The polarization distribution in the sky during a total solar eclipse is calculated with a simple secondary light-
scattering model. This model uses the light-intensity measurements near the horizon during the eclipse and the
pretotality and posttotality skylight polarization observations as input. It is found thaf the model can explain
various observations during totality, including the quantitative measurements of Shaw [Appl. Opt. 14, 388 (1975)] of
the polarization distribution of the sky in the solar vertical during the 1973 total eclipse.

1. INTRODUCTION

When the totality phase of a solar eclipse starts, the appear-
ance of the sky changes dramatically. In a rapid transition
the circumstances change from full daylight to a situation
comparable to twilight, which is accompanied by a sudden
drop in the sky intensity of about 3 orders of magnitude. 1-3

The remaining lighting of the sky is caused by multiple
scattering of sunlight, which starts in the region outside the
lunar umbra, 3 instead of by singly scattered light from a
well-defined point source during nontotality conditions.
(The light of the solar corona is 6 orders of magnitude weak-
er than that of the uneclipsed Sun3 and therefore makes only
a negligible contribution to the illumination.) Therefore
the illumination of the sky during totality must be described
basically in a two-step process: (1) at least one scattering in
the region outside the umbra, followed by some absorption;
and (2) at least one scattering inside the umbra.4 Light
resulting from the first step is visible during totality as a
reddish band about 100 in width above the horizon all
around us; this band acts as the light source for the illumina-
tion of the sky above us. Above 10-20°, light from the two-
step process dominates the scenery.5

Since the polarization for singly scattered light and multi-
ply scattered light differs completely, the polarization pat-
tern of the sky also changes abruptly at totality. It has been
known since at least 1905 (Ref. 6) that the polarization of the
sky decreases drastically, at least at 90° from the Sun.
Starting in 1961, a few instrumental records have been pub-
lished of the polarization change of the sky during eclipses. 7-11

However, the information obtained by these early observers
about this state of polarization of the sky is rather limited,
since they restricted their measurements to one single point
in the sky, located at 900 from the Sun in the solar vertical.
This situation lasted until 1973, when Shaw recorded the
polarization of the sky as a function of the zenith angle
during the June 30th eclipse. He found a symmetry in the
polarization with respect to the zenith, with a minimum
value in the zenith and maximum polarization rather close to
the horizon. His data are complete enough to justify the
development of a simple model as a first attempt to come to
a quantitative understanding of the polarization of the sky
during solar eclipses.

In this perspective, we present in this paper a simple two-
step scattering model for the polarization of the sky during
totality. It is based on secondary scattering by a degraded
Rayleigh scatterer in which the depolarization factor is de-
duced from the pretotality and posttotality measurements,
and it uses the observed intensity distribution near the hori-
zon during totality as input. Despite the simplicity of this
approach, its numerical results compare satisfactorily with
observations made during various eclipses.

2. FORMULATION OF THE MODEL

The propositions of the model are the following:

1. The polarization is described as result of a two-step
scattering process.

2. Step 1 is the scattering of sunlight in a region outside
the umbra, followed by some absorption and depolar-
ization and possibly by additional scattering by aero-
sols.

3. In the numerical evaluations, the polarization of light
resulting from step I must be neglected, since the
available data do not include measurements of it.

4. Step 2 is single scattering to the observer of light
produced in step 1 by a degraded Rayleigh scatterer.

5. The paths of light from step 1 to the secondary scat-
tering centers are parallel to the ground.

6. The secondary scattering centers are close to the ob-
server.

7. The scattering matrix A of step 2 is identical to the
scattering matrix during pretotality and posttotality
and is given by a linear combination of a pure Rayleigh
scatterer and an unpolarized isotropic scatterer.12

Some comments must be made on the above-mentioned
propositions and the handling of them.

a. Light resulting from step 1 is concentrated near the
horizon. Its intensity is taken from the observations.

b. The depolarization factor of the degraded Rayleigh
scatterer is taken from the pretotality and posttotal-
ity skylight polarization observations.
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c. Neglect of polarization resulting from step 1 is justi-
fied if the optical thickness along the line between the
observer and the edge of the umbra is large enough.
In that case additional scatterings by aerosols are im-
portant, and they destroy the polarization. This de-
polarization can be expected to be more effective at
small wavelengths. As we will see below, there is
some indirect evidence for this depolarization in
Shaw's 400-nm measurements. In Appendix A, a
quantitative estimate is made from the effect of relax-
ing proposition 3 and hence introducing polarization
in step 1.

d. It should be noted that the propositions of our model
are close to the ones used by Soret' 3 and by Ahl-
grimm'4 in their models to describe the polarization of
sunlit sky, taking into account secondary scattering.

e. The validity of the model is restricted to the regions of
the sky where single scattering can be neglected, i.e.,
above a height of about 200 over the horizon. 5

3. CALCULATION OF THE POLARIZATION
DISTRIBUTION

Since circularly polarized light does not show up in the two-
step process, we can describe the polarization of light by a
three-dimensional Stokes vector S:

[ ] [P ]o2 (1)
U I P sin 20_

Here I denotes the intensity, P denotes the degree of polar-
ization, and 0 denotes the angle of polarization with respect
to a plane of reference.'5,' 6 We take the vertical as the plane
of reference for Stokes vectors S. However, for scattering
matrices A, the scattering plane is taken to be the plane of
reference. Let S, be the Stokes vector of light after step 1,
thus entering the secondary scattering center from the hori-
zon, and let T(0) be the rotation matrix defined by

scattering matrix and 0 denotes the scattering angle. A
substitution of this matrix . into Eq. (3) yields the Stokes
vector S2 in arbitrary units, as normalization constants have
been omitted in Eq. 4).

In pretotality and posttotality, single scattering is domi-
nating, and .4t is acting on So = (1, 0, 0).. When this matrix
multiplication is carried out for single scattering, the degree
of polarization becomes

P IQ2 +-p Q sin20 
I 1+cos20+ID

which gives, for 0 = 900,

P = 1
1 + ID

(5)

(6)

So, with the aid of Eq. (5) or (6), the factor ID in Eq. (4) that
determines the degradation with respect to pure Rayleigh
scattering can be fixed from measurements outside totality.

The evaluation of the two-step process with Eq. (3) re-
quires the introduction of some angles. We define z as the
solar elevation, h as the height in the sky where the observer
is looking (height of the secondary scattering center), as
the azimuth of the secondary scattering center minus the
azimuth of the Sun, a as the azimuth of a light ray coming in
to the secondary center and measured relative to the line
connecting the observer with secondary scattering center,
and A, as the azimuth of a light ray coming in to the second-
ary center minus the azimuth of the Sun.

All angles Al, 4/, a, 02, 03 are taken to be positive in the
anticlockwise direction. Under proposition 6, the relation

1 = A + a (7)

holds. Figure 1 displays the geometry of the problem.
The Stokes vector S, is a function of Al and depends on

several factors, among them the distance to the edge of the
umbra, the cloud decks; and the reflectivity of the Earth. If
we assume the latter two factors to be constant around the
observer, S will be a symmetrical function of Al during
midtotality. Relaxing proposition 3 for a moment, S, can be
expressed as

S, = T(-k 1)M'Sf(t 1),(2)

The Stokes vector S2 after step 2 is then found by the matrix
multiplications

S2 = T(-0 3 )jKT(0 2 )S1. (3)

Here 2 denotes the angle of the scattering plane with the
vertical in step 2 as seen from the secondary scattering cen-
ter in the direction of the light ray incoming from the hori-
zon, and 03 denotes the angle of this scattering plane with
the vertical as seen by the observer looking to the secondary
scattering center.

From proposition 7, the scattering matrix is given by 2 ,16

1 + os2 +ID

J = -sin2 0
0

-sin 2 0 0 1
1 + cos 20 0 , (4)

0 2 cos 

where the factor ID results from the unpolarized isotropic

(8)

in which A' is given by Eq. (4) with an unknown factor ID' in
it, 01 is the angle of the primary scattering plane relative to
the vertical, f(V11) is the azimuthal dependence of S, after
integration of all primary scattering centers in the direction
A, outside the umbra, and So = (1, 0, 0) is the Stokes vector of
the Sun. Note that the factorization of S, in Eq. (8) in a
matrix multiplication and an azimuth-dependent intensity
function f(t,) acting equally on all Stokes parameters is an
approximation, one that is completely true if step 1 contains
just a single scattering.

From spherical geometry one finds the relations

Cos °1 = Cos Z Cos 1

and

tan (Al = -sin ,1/tan z, (9)

where 01 denotes the scattering angle in stop 1.
A straightforward calculation of the intensity function

0 01
cos 20 sin 20 

-sin 20 cos 2&0
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Fig. 1. Geometry of the two-step scattering model. The definitions of the angles are given in the text.

f(4',) from the geometry of the umbra is permitted only for
an optically thin atmosphere and for homogeneous meteoro-
logical conditions and surface reflectivity around the obser-
vation site. If we neglect the extinction and the curvature of
the Earth,5 we get simply

f(4,) X r-1(4l), (10)

where r denotes the distance of the observer from the edge of
the umbra (r is not too small). Of course, the shape of the
umbra is an ellipse. Hence, if the observer is the central
point of this ellipse, one finds from Eq. (10) that

f(A1) = (1 - cos2z cos2 ')" 2 1-1/2 cos2z cos2%. (11)

The latter approximation holds if cos2z is not too large.
When the observer is in one of the foci of the ellipse, one
finds that

f(IP,) = 1 + cos z cos 1. (12)

When the optical thickness along r is sufficiently large,
f(4'l) may deviate from expression (10). This will be more
likely if the wavelength is shorter. However, a decrease of
f(ipj) with increasing r can be expected anyhow. For this
case, we use instead of expression (11) the approximate
expression

f(4',) = 1 - a2 cost2 4ly (13)

where the empirical factor a2 < 1 is determined from the
intensity measurements near the horizon during eclipse.
Because of the uncertainty in the processes in step 1 (among
them the depolarization that is due to processes such as
small-angle scattering), such an empirical approach should
always be preferred for the determination of S above a
direct calculation from Eq. (8).

Under proposition 3, one has, with Eq. (7), for S,

= f('+ a)1
S = ° 

.

(14)

Furthermore, one finds from spherical geometry for step 2
the following expressions from Fig. 1:

cos 02 = cos a cos h,

tan '02 = -sin a/tan h,

tan 03 = -tan a/sin h. (15)

Here, 02 is the scattering angle in step 2.
Carrying out Eq. (3) leads to the following expressions for

the Stokes parameters in S2:

12(h, , a) = (1 + ID + cos2h cos2 a)f(q + a),

Q2(h, , a) = (1 - [1 + sin2 h]cos2 a)f(4 + a),

U2(h, A, a) = sin 2a sin hf(4 + a). (16)

Integration of Eqs. (16) over a from 0 - 27r yields the desired
Stokes vector at (h, 4') in the sky. We denote this end result
by a barred symbol S2 = (12, Q2, U2 ). Equations (16) imply
that the relation

S2 (h, 4') = S2 (h, + 1800) (17)

holds. Thus, in a given vertical plane, the polarization at
either side of the zenith is equal.

To calculate S2, we first take the intensity function f(4'I) of
the form of Eq. (12) (the observer is at one of the foci of the
ellipse-shaped umbra). Integration of Eqs. (16) then yields
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I2(h, ) = 7r[2(1 + ID) + cos2h],

Q2(h, = r cos2h,

U 2(h, 4 = 0, (18)

which shows that the direction of the plane of polarization is
always vertical (Q2 > 0, U2 = 0) and the degree of polariza-
tion P is independent of the azimuth and independent of the
ellipticity of the umbra and hence of z. Therefore the de-
gree of polarization becomes essentially the same as for a
circularly shaped umbra and is given by

Q2 Cos2hP(h, 4') = - - (19)
I2 2(1 + ID) + cos2 h

which ranges from zero in zenith to maximally 33% near
horizon. If one applies Eq. (13) for f(4') (midtotality and
the observer at the central line of eclipse), one has

I2 (h, 4' = r[(2 -a2)(1 + D)

+ (1 - /4 a2 cos 2 - /2a
2)cos 2 h]

Q2(h, 4') = r[/ 2a
2 cos 2' + (1 - /4a2 cos 24'- /2a

2)cos2 h]

U2(h, 4' = /2 ra2 sin 2 sin h, (20)

which remains azimuth dependent. In the solar vertical ('
= 0, 1800), U2 = 0 and Q2 > 0 so that the polarization is
vertical again. The degree of polarization is given by

P(h, 0) = P(h, 1800 ) = Q2(h, )
I 2(h, 0)

%/a 2 + (1 - %a 2 )COS2 h

(2 - a2)(1 + ID) + (1 - /4a
2)COS2h

In the plane perpendicular to the solar vertical containing
the zenith (4 = 900, 270°), U2 is zero again, but Q2 changes
sign at

2 22
Cos2h = 4 2 ' (22)

4-a 2

indicating the existence of neutral points at either side of the
solar vertical during mideclipse. Since a2 < 1, these neutral
points will always be higher in the sky than 35°.

If the observer is not in the center of the umbra anymore,
or if f(4'j) is otherwise irregularly distributed around the
observer, then U2(h, 0) may be nonzero. This indicates
some tilt in the direction of polarization. However, Eqs.
(16) indicate that U2(h, 0) is usually much closer to zero than
is Q2(h, 0) if the properties of f(4,) are not too extreme.
Therefore the model does not yield much change in the
direction of polarization in the solar vertical when the
eclipse proceeds. Of course, if proposition 3 is relaxed, larg-
er tilts of the polarization plane become possible.

4. COMPARISON WITH OBSERVATIONS

A. Polarization Distribution in the Solar Vertical
The only measurements of the polarization distribution in
the sky that have come to our attention are those taken by
Shaw during the 1973 eclipse.' He scanned during totality

the degree of polarization in the solar vertical as a function of
the zenith angle for a wavelength of 400 nm (presented in his
Fig. 10). At the same wavelength he measured the degree of
polarization as a function of time for a fixed point in the sky,
chosen in the solar vertical and at 900 from the Sun (his Fig.
9). Moreover, he performed intensity scans at 400 and 600
nm in the solar vertical and in the plane perpendicular to it
(his Figs. 2-5).

Although it can be inferred from his Figs. 9 and 10 that his
polarization scan in the solar vertical did not take place at
midtotality, it is not possible to reconstruct its exact timing.
For this reason, and because the intensity scans in Figs. 2
and 4 of Ref. 1 provide only a few points of the radiance
during the eclipse near the horizon (necessary input for our
model), it is also not possible to give an exact experimental
value for the intensity function f(PI) in Eq. (14) after step 1,
although it is obvious from Shaw's measurements that f(4')
changed during the course of the eclipse.

Fortunately, however, Shaw observed for 400 nm only a
weak dependence of the intensity as a function of Al.
Therefore, it is possible to choose for f(4') the simple form of
formula (13). If we take for the intensity after step 1 the
measured intensity at h = 100 as the standard, we find that
a 2

= 0.1. This is considerably less than the value of a 2 = 0.3,
expected from geometry alone [formulas (10) and (11)].
This low value of a 2 can be considered an indication that
proposition 3 is largely fulfilled at 400 nm. From Shaw's
pretotality and posttotality measurements at 90° from the
Sun, one finds that the degree of polarization without eclipse
would have been 42%, and hence ID = 1.22 [Eq. (6)].

Figure 2 compares Shaw's observations with the theory,
Eq. (21). The agreement at h > 250 is satisfactory, although
our model generates a slightly lower polarization. However,
from his time series, Shaw reported at midtotality a polar-
ization of only 4% at 90° from the Sun, as compared with 9%
during his solar vertical scan. So, rather than giving an
underestimate, our model slightly overestimates the polar-
ization, but such small differences are well within the uncer-
tainties of the model results.

The experimental curve of Shaw shows some asymmetry
with respect to the zenith, which Shaw attributes to differ-
ences in surface albedo around the observing site. However,
our model predicts for every intensity function f(4',) a sym-
metric behavior of the polarization with respect to the zenith
[see Eq. (17)], while during Shaw's eclipse proposition 3
seems to be largely fulfilled. Therefore we attribute the
observed asymmetry chiefly to the change of the eclipse
geometry and hence of f') during the scan, taking into
account that this scan would probably have taken at least 60
sec, i.e., 20% or more of the time of totality, and that the
eclipse geometry is rapidly changing.

B. Direction of Polarization
In the solar vertical our model predicts at midtotality a
vertical polarization. Unfortunately, Shaw did not present
measurements of the angle of polarization. Therefore, at
my request, Jannink17 observed visually the direction of
skylight polarization with the aid of a simple Minnaert po-
lariscope' 8 during the 1981 Siberian eclipse (z = 250) near
the Sun (so h = 250). The observed direction of the easily
visible polarization was within 100 of vertical. This visual
observation was completed by a set of two slides that he
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Fig. 2. Polarization distribution in the solar vertical during totality. The dashed line is the observed polarization reported by Shaw.' The
solid line is the calculated polarization of the present two-step scattering model with parameters ID = 1.22 and a2 = 0.1, taken from Shaw's pre-
totality, posttotality, and intensity observations. Note that the model is essentially unable to describe the behavior for low h, where singly
scattered light becomes dominant.

made with a polarizer before the camera (horizontal and
vertical axes, respectively), showing both the polarization of
the solar corona and that of the sky around it. The combi-
nation of these two data (together with the known shape of
the corona during that particular eclipse) independently
confirms his visual observation. From this report we con-
clude that in general the dominating aspect of the direction
of polarization is vertical during eclipse, in agreement with
our model.

By combining Jannink's observations with the measure-
ments of Shaw, a further conclusion can be drawn on the
applicability of the present theory. Since singly scattered
light arriving in the solar vertical is horizontally polarized, a
switch in the direction of polarization is expected at some
height in the sky where multiple scattering starts to domi-
nate. This switch should be accompanied by a local mini-
mum of the degree of polarization as a function of height.
However, in Shaw's scan no trace of such a minimum is
apparent. This can be considered a second indication that
for Shaw's observations the optical thickness is so large at
400 nm that light coming from outside the umbra is largely
depolarized by additional (forward) scatterings in its path to
the observer (comment c in Section 2). Again, this means
that the application of our model with proposition 3 (ne-
glecting the polarization of Sl) is justified for Shaw's obser-
vational conditions.

If one assumes that only light from step 2 is responsible for
the polarization observed by Shaw at h = 0 (so U, = Q = 0),
and if one accepts our model result that the Stokes parame-
ters after step 2 are weakly dependent on h for low h [see
Eqs. (16), (18), and (20)], then it is possible to infer from the
drop in the polarization near the horizon the relative intensi-
ties of light from step 1 and light from step 2. The decrease

in the polarization by a factor of 2 between h = 200 and h =
0° indicates that near the horizon these intensities at 400 nm
are of comparable strength, which is consistent with the
outcomes of the various intensity scans of Shaw and which
does not conflict with the theoretical findings of Gedzel-
man. 5

C. Other Observations
Apart from Shaw's measurements, there are a few instru-
mental observations of the polarization of the sky during
eclipses. 7-"1 All the measurements have in common that
they are made of a single fixed place in the sky, located in the
solar vertical and at 900 from the Sun. Scans as a function
of time have been reported, from which the value at maxi-
mum eclipse can be deduced. Since intensity scans near the
horizon are not reported by these authors and the eclipse
and observing conditions are different for each eclipse, a
detailed comparison with theory cannot be carried out.
However, to get an impression of it we have developed the
following procedure. First, as a standard polarization dis-
tribution, we adopt the azimuth-independent polarization
distribution given by Eq. (19) with ID = 1. Second, each
observed degree of polarization at mideclipse Ptot is trans-
formed to Pred, which is the degree of polarization that would
have been observed if ID = 1 (which means that the observed
degree of polarization at noneclipse conditions Ppret is re-
placed by a standard value of 0.5). This is done with aid of
Eq. (19), so that

= 2(1 + ID) + cos2h 2Ppret -1 + cos 2h
red 4 2 + P tot +h= 2toterd 4 + csh tt 4 + cos h

The values of Pred obtained in this way are compared with

(23)
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Table 1. Summary of Instrumental Observations of Skylight Polarization at Mideclipsea
Observation

Observer(s) Number Year Wavelength (nm) h (0) Ppret (%) Ptot (%) Pred (%)
de Bary et al.7 1 1961 green 78 78 0 0

Moore and Rao 8
2 1965 475 49 46 0.5 0.5
3 1965 601 49 33 4.5 6.6

Miller and Fastie 9 4 1965 558 25 62 31 26.0
5 1965 578 25 66 35 28.0
6 1965 610 25 49 28 28.5
7 1965 630 25 47 26 27.4

Rao et al.10
8 1966 475 20 60.5 19 16.3
9 1966 601 20 62.5 21 17.6

Dandekar and Turtle' 1 10 1970 475 44 42 4 4.7
11 1970 600 44 42 <0.5 <0.6

Shawl 12 1973 400 53 45 4 4.4

a Ppret is the polarization at noneclipse conditions (obtained from interpolation of the pretotality and posttotality measurements), Pwt is the polarization atmideclipse, and his the height above the horizon of the point of observation. Since all measurements are performed in the solar vertical at 900 from the Sun, the so-lar elevation z can be found from z = 90-h. Pred is the degree of polarization during eclipse after transformation to standard circumstances with Ppret = 50% (ID =1; see the text). The numbering corresponds to that in Fig. 3.

the standard polarization curve, which is Eq. (19) with ID =
1.

Table 1 summarizes the observations (including that of
Shaw), and Fig. 3 compares Pred with the standard curve.
Although this method is quite rough, and the observations
are done at very different conditions (e.g., observations 2-9
are from a high-flying aircraft), there is clearly a correlation
between the curve and the observations, although the
ground-based observations systematically yield a lower de-
gree of polarization than does the theory (the same holds in

it

principle for Shaw's polarization distribution, as outlined
above). As shown in Appendix A, such behavior is to be
expected if the polarization of light resulting from step 1 is
completely neglected.

A few further remarks must be made. In the solar verti-
cal, our model predicts essentially a vertical polarization
during mideclipse. Moore and Rao,8 however, reported for
red a reversed polarization (their observation for blue is in
agreement with our model). We attribute this effect to the
larger contribution of polarization in S for red light, which

90°

h zenith
Fig. 3. Comparison of the observed degree of polarization during several eclipses with the theory. The observations are transformed into a de-
gree of polarization Pred for standard circumstances. The theoretical curve is Eq. (19) with ID = 1. The numbers at the points correspond to
those in Table 1.
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should result in a reduction of the vertical polarization of the
sky (see Appendix A). The fact that Shaw's intensity mea-
surements near the horizon at 600 nm largely satisfy expres-
sion (10) is consistent with this explanation. Furthermore,
the polarization phase scan of Dandekar and Turtlell also
displays a wavelength dependence. The fact that their mea-
surements do not show a complete reversal of the polariza-
tion plane may be attributed to the eclipse geometry [the
shape of f6A4,01 combined with a relatively large contribution
of polarization in Si.

5. CONCLUSION

The previous section indicates that, despite its simplicity,
our model seems to be able to describe the observations of
the polarization of the sky during eclipses at least qualita-
tively and, in the case of Shaw's observations, even more
than that. The conclusion might be drawn that, at least for
the shorter wavelengths, it is justified to postpone proposi-
tions 1-7. For longer wavelengths, the analysis indicates
that proposition 3 is the weakest of the propositions. The
analysis in Appendix A indicates that our model with propo-
sition 3 would overestimate the polarization for many solar
heights; this finding is consistent with Subsection 4.C.

What remains to be discussed is the good agreement be-
tween Shaw's observations and the theory (Subsection 4.A).
In the light of the findings in Appendix A, one may even
wonder how far this close agreement is a lucky coincidence,
caused by the short wavelength and by the fact that at z =
370 the model is rather insensitive to the neglect of polariza-
tion of S,. Anyhow, one would expect at best only qualita-
tive agreement if one calculates the polarization in this way
from the limited data of S. The close agreement was there-
fore also a surprise to us.

Within the limited set of existing observations there is no
possibility to test the model further at present. This has to
wait until more detailed observations are available. Such
observations should include the polarization distribution of
the eclipsed sky, preferably in the solar vertical plane and in
the plane perpendicular to the solar vertical containing the
zenith, together with simultaneous alumcanter scans of in-
tensity and polarization near the horizon, all of them prefer-
bly at various wavelengths. Only if such a complete set of
measurements is available will a rigorous test of models like
the present one be possible.

APPENDIX A: ANALYSIS OF THE EFFECT OF
RELAXING PROPOSITION 3

To get an impression of the effect of proposition 3 (neglect-
ing the polarization of S), we calculate in the solar vertical
for h = 0 and h = 900 the polarization of the sky with and
without proposition 3. The calculation is carried out explic-
itly for the special case in which the observer is located in the
central point of a circularly shaped umbra, f(t,1)= 1. We
note, however, that for an ellipse-shaped umbra the results
are identical if the observer is at one of the foci of the ellipse.

In this appendix we maintain our notation, but for the
model without proposition 3 a prime is added to the relevant
symbols. Thus P'(h) is the degree of polarization without
proposition 3, P(h) is the degree of polarization with propo-
sition 3, and so on. In the present analysis, we take ID = 1 in

the scattering matrix A for step 2, as we did also in the
standard curve used in Subsection 4.C.

If the Stokes vector after step 1 is given by SI' = (I,', Q1',
Ut'), then the matrix multiplication of Eq. (3) results in

F 2I1'- Q1

S2'(h = 900) = (-I,' + Ql')cos 2a ,

_ (I - Ql')sin 2aJ

(Al)

I'(2 + cos2 a) + Q1' sin2al

S2'(h = 0) = Ql'(1 + cos2a) + I,' sin 2 , (M)

2U0') cos 

in which the solar vertical plane is the reference. By using
Eqs. (8) and (9), Si' can be specified. To make the results
comparable to those obtained with Eq. (19), we use for step 1
a simplified scattering matrix ' in which the matrix ele-
ment mll' = 1 + ID' instead of mll' = 1+ ID' + cos20. D' (the
measure of depolarization in step 1) remains unspecified for
the moment. For f(iPl) =1, we have, from Eqs. (8) and (9),

L ,-1 + ID' 2
Si' = Q' = cos 2z - COS2 COS2Z

YU1'] sin ae sin 2z

(A3)

By substituting Eq. (A3) into Eqs. (Al) and (A2), one finds
that after integration over a the third Stokes parameter in
S2' is zero again for h = 0° and h = 900. The degree of
polarization can be calculated from the integration of I2' and
Q2' over a and results in

P'(h = 90°) =
-I/2 COS Z

, (A4)4(l + ID') -3 cos2z + 2

(A5)
(1 + ID') + 17/4.cosz - 3
5(1 + ID') + 7/4 cos2z - 1

Here the sign of P' corresponds to that of Q2'. Thus P' > 0
means that the direction of polarization is parallel to the
solar vertical plane. Under proposition 3, Q, = U, = 0 and
we have P = 0 and '/5 for h = 900 and 00, respectively. By
taking now a lower limit of 1 for ID', one has for h = 90°

0 < P(900 ) - P'(900) < 0.07 cos2z, (A6)

indicating that proposition 3 tends to overestimate the po-
larization in the zenith by at the most a few percent [for
Shaw's eclipse, P(90 0 ) - P'(90) < 0.04; for de Bary's7

eclipse, P(900 ) - P'(90°) < 0.07; and for Moore's8 and Dan-
dekar's" eclipses, P(900 ) - P'(90) < 0.031.

For h = 0, one has, from Eq. (A5) and P(0O) = 1/5,

II/ - /10 COSZ
P(O) - P'(0o) = 5(1 + ID') +7/4 cos2z -1

(A7)

which indicates that for solar elevations below 32°, the intro-
duction of proposition 3 tends to cause underestimation of
the polarization. In the set of available observations (Table
1) none represents this case with low z but observation near
the horizon. For z > 32°, Eq. (A7) indicates that assump-
tion 3 causes overestimation of the polarization. If ID' > 1,
the upper limit of this overestimation ranges from 0.03 and
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0.05 for the eclipses observed by Shawl and Moore and Rao,8

respectively, to 0.25 for those observed by Rao et al.10 and by
Miller and Fastie. 9
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