
A general setting for halo theory

Walter Tape and Günther P. Können

We describe a general framework for systematically treating halos that are due to refraction in prefer-
entially oriented ice wedges, and we construct an atlas of such halos. Initially we are constrained
neither by the interfacial angles nor the orientations of real ice crystals. Instead we consider “all
possible” refraction halos. We therefore make no assumption regarding the wedge angle, and only a
weak assumption regarding the allowable wedge orientations. The atlas is thus a very general collection
of refraction halos that includes known halos as a small fraction. Each halo in the atlas is characterized
by three parameters: the wedge angle, the zenith angle of the spin vector, and the spin vector expressed
in the wedge frame. Together with the sun elevation, the three parameter values for a halo not only
permit calculation of the halo shape, they also give much information about the halo without extensive
calculation, so that often a crude estimate of the halo’s appearance is possible merely from inspection of
its parameters. As a result, the theory reveals order in what seems initially to be a staggering variety
of halo shapes, and in particular it explains why halos look the way they do. Having constructed and
studied the atlas, we then see where real or conceivable refraction halos, arising in specific crystal shapes
and crystal orientations, fit into the atlas. Although our main goal is to understand halos arising in
pyramidal crystals, the results also clarify and unify the classical halos arising in hexagonal prismatic
crystals. © 1999 Optical Society of America
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1. An Atlas of Halos

A. Introduction

In this article we present a unified conceptual ap-
proach to the theory of halos. The article is moti-
vated by a desire to understand the many exotic halos
that might arise in preferentially oriented pyramidal
crystals. Although the approach of the article can be
extended to halos involving both reflection and re-
fraction, the discussion here is restricted to refraction
halos—those halos that are due to refraction only.
The approach permits the parameterization and
hence the classification of all refraction halos arising
in preferentially oriented crystals, with only three
parameters necessary to determine a halo. To-
gether with the sun elevation, the three parameter
values not only permit calculation of the halo shape,
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but they also give qualitative information about the
halo shape, without calculation. The parameters
themselves are easily calculated, thus making possi-
ble a systematic treatment of all ~refraction! halos.

This article is divided into three major sections.
n Section 1 we construct an atlas ~Appendix A! of all
ossible halos, making no assumptions about real
rystal shapes and only a weak assumption about
eal crystal orientations. In Section 2 we discover
atterns and structure in the atlas, and we show why
he halos in the atlas look the way they do. In Sec-
ion 3 we show how real halos, or at least plausible
alos, with their specific crystal shapes and orienta-
ions, fit into the atlas.

We make a number of idealizations that qualify our
esults. For example, we make no intensity calcu-
ations; we treat all rays as being of equal intensity,
nd we neglect the effects of shielding of one crystal
ace by another. So our approach is not meant to
ompete in realism with the highly successful Monte
arlo simulations of halos originated by Pattloch and
ränkle.1 Rather it complements the Monte Carlo

simulations by giving conceptual insights that the
simulations alone cannot provide.

Those who are familiar with the classical halos but
who have not thought about halos arising in pyrami-
dal crystals may question the need for another treat-
ment of halo theory. One of the outcomes of this
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study is that the classical halos are relatively
simple—simple, in fact, to the point of being mislead-
ing. A casual comparison of Fig. 55, which is for the
classical 22° arcs in hexagonal prismatic crystals,
with Fig. 57, which is for 24° arcs in pyramidal crys-
tals, will make the point.

Perhaps the closest precursor of this paper is the
one by Tricker,2 who calculated a number of halos
rising in preferentially oriented pyramidal crystals.

B. Spin Vector Assumption

We study refraction halos in their most rudimentary
form. Each halo arises in an idealized ice wedge
bounded by two half-planes. To calculate the halo,
we follow light rays from the sun through the wedge
as the wedge assumes various prescribed orienta-
tions. We then plot the points on the celestial
sphere that are in the direction opposite to the out-
going rays.

Later when the halo atlas is constructed, the set of
wedge orientations for each halo in the atlas will be
assumed to satisfy the Spin Vector Assumption:

There is a unit vector P that is fixed in the wedge
and has constant zenith angle c ~Fig. 1!. Therefore,
with k 5 ~0, 0, 1!,

P ? k 5 cos c 5 constant. (1)

The wedge is otherwise unconstrained. The vector
P is the spin vector.

Equivalently, there is a spin axis fixed in the
wedge, with the wedge free to rotate about the spin
axis, and the spin axis free to rotate about the verti-
cal.

The Spin Vector Assumption may seem narrow and
contrived, but it is satisfied approximately by all
known halos arising in preferentially oriented crys-
tals. Examples are given in Section 3. As sug-
gested by the examples, known halos require only P
vertical ~c 5 0 or 180! or P horizontal ~c 5 90!, and
we restrict our illustrations to halos in these two
categories. We refer to them as point halos and

Fig. 1. Wedge and spin vector P. The vector P is fixed in the
wedge and has constant zenith angle c. The wedge is otherwise
unconstrained; it is free to rotate about P, and P is free to rotate
about the vertical.
great circle halos, respectively, for reasons that will
become clear in Section 2. ~All angles are in de-
grees.!

The following informal description suggests how
the Spin Vector Assumption will lead to natural pa-
rameters for halos and then to the halo atlas.

The spin vector for a halo can be modeled by a nail
driven into a wooden wedge. The placement of the
nail in the wedge determines the wedge orientations
responsible for the halo. For a point halo, for exam-
ple, the orientations are obtained by first tipping the
wedge so that the nail points directly up, and then by
giving the wedge all possible rotations about the ver-
tical.

To describe the placement of the nail, we put the
wedge in a preassigned standard orientation and
then record the direction of the nail ~spin vector!.
The direction corresponds to a point on the ~unit!
sphere. This point is the “pole” of the halo. The
pole determines the nail placement, and the nail
placement determines the wedge orientations. To-
gether with the wedge angle, the orientations deter-
mine the halo.

In this way every point halo is given by a wedge
angle and a point of the sphere. A similar conclu-
sion holds for great circle halos. In either case the
appearance of the halo at any given moment depends
also on the sun elevation. The halo atlas will be a
depiction of point halos and great circle halos for
representative sun elevations, wedge angles, and
points on the sphere.

We have introduced the Spin Vector Assumption
here at the beginning because it will be the key to the
construction of the halo atlas. The assumption
plays no role, however, until later in the section, and
we do not invoke it at the present time. At the mo-
ment we make no assumption about the set of crystal
orientations responsible for a halo.

C. Snell’s Law is Parallel Projection

To find halo shapes, whether computationally or con-
ceptually, we need to study the passage of light
through a wedge.

For positive numbers n1 and n2 and for vectors S
and N of lengths n1 and 1, we define

pr~S, N, n2! 5 S 1 lN, (2)

here

l~S, N, n2! 5 @~S ? N!2 1 n2
2 2 n1

2#1y2 2 S ? N. (3)

hen pr~S, N, n2! is the parallel projection of S to the
phere of radius n2, with the direction of the projec-

tion parallel to N; we call it the N-projection of S to
he sphere of radius n2.

To express Snell’s law in the above terms, let inci-
dent and refracted rays I and J have lengths equal to
the refractive indices n1 and n2 of their respective
mediums, and let N be the unit normal to the bound-
20 March 1999 y Vol. 38, No. 9 y APPLIED OPTICS 1553
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ary between the mediums and in the direction from
the second medium to the first ~Fig. 2!. Then

J 5 pr~I, 2N, n2!. (4)

Rather than a ray itself, we are almost always
interested in its negative, which gives the point of
light on the celestial sphere apparently lit by the ray,
and which we therefore call the light point of the ray.
Thus if S 5 2I and T 5 2J are the light points of I
and J, then

T 5 pr~S, N, n2!, (5)

with S and T having lengths n1 and n2. In words, T
is the N-projection of S to the sphere of radius n2.
The point T will be defined if S z N $ 0, which ensures
that the incoming ray is indeed incident on the
boundary in the required direction, and if l in Eq. ~3!
is real, which ensures that there is a transmitted ray.

Now if a ray I 5 2S is incident on a wedge with
outward normal N at the entry face and inward nor-
mal X at the exit face ~“N” for “eNtry”, “X” for “eXit”!,
and with index of refraction n, then, as above but
with n1 5 1 and n2 5 n, the light point T for the ray
within the wedge is

T 5 pr~S, N, n!. (6)

nd the light point H for the outgoing ray from the
wedge is

H 5 F~N, X, S! 5 pr~T, X, 1! 5 pr@pr~S, N, n!, X, 1#.

(7)

If S is the sun, then H is the halo point. According
to Eq. ~7!, the relation between S and H is just a
composite of successive projections, as in Fig. 3. The
figure will be crucial in Section 2 to understanding
why halos look the way they do.

In Eq. ~7! the halo point H obviously depends on the
index of refraction n as well as N, X, and S. How-
ever, we always take n 5 1.31, which is the value for
ice.

Fig. 2. Left, light ray proceeding from left to right, from medium
with refractive index n1 to medium with refractive index n2. The
ector I, with length n1, is the incident ray, and J, with length n2,

is the refracted ray. The vector N is the unit normal vector. Right,
same but with the addition of the light points S 5 2I and T 5 2J,

hich give the directions from which the rays I and J appear to be
oming. The point T is the N-projection of S to the sphere of
adius n2. The relation between S and T, like that between I and

J, is parallel projection between concentric spheres of radii n1 and
2.
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D. Wedge Frame and Wedge Orientations

As before let N be the outward unit normal to the
ntry face of the wedge and X the inward unit normal
o the exit face. We now define the wedge frame to
onsist of the orthonormal vectors

A 5 ~N 1 X!yiN 1 Xi,

B 5 ~N 3 X!yiN 3 Xi,

C 5 ~N 2 X!yiN 2 Xi, (8)

hich are fixed in the wedge ~Fig. 4!. The vector B
s in the direction of the refracting edge of the wedge.
The refracting edge is the intersection of the entry
nd exit faces.! The vector C is normal to the re-
racting edge and bisects the angle formed by the
ntry and exit faces. The vector A completes the
right-handed! frame.

Fig. 3. Sun S and corresponding halo point H, both on the inner
phere. The halo point is the apparent position of the sun when
ne looks at the sun through the wedge. To find it geometrically,
ne N-projects point S to the outer sphere, getting point T, and
hen X-projects back to the inner sphere, getting H. The vectors

N and X are the entry and exit face normals of the wedge. The
two spheres are concentric and have radii 1 and n, the refractive
indices outside and inside the wedge. The outer sphere is cut
away completely, leaving only a skeleton, and the inner sphere is
cut away at the left to reveal N and X. The wedge should be
thought of as at the center of the spheres, as in Fig. 10.

Fig. 4. Wedge frame vectors A, B, C and entry and exit normal
vectors N and X. Note that the light ray ~not shown! proceeds
approximately opposite to the directions of N and X.



The wedge frame depends on the entry and exit
faces. The entry and exit faces are designated in
advance, and light is permitted to enter the wedge
only at the designated entry face.

Define the wedge to be in standard orientation
when A, B, C coincide with the standard coordinate
vectors i, j, k, as in Fig. 5. Some other orientation is
given by specifying an orientation ~or rotation! matrix
u, that is, an orthogonal matrix with determinant 1;
such a transformation preserves inner products and
handedness. We regard u as starting with the
wedge in standard orientation and then giving it the
desired orientation. Then ui 5 A, uj 5 B, and uk 5
C, and the columns of the matrix u are A, B, and C,
so that u can be thought of as the wedge frame itself.

Each halo is associated with a set U of wedge ori-
entations that give rise to the halo. Each wedge
orientation is an orientation matrix u as above. The
wedge is in standard orientation when u is the iden-
tity matrix e. Note, however, that e need not be in U.

E. Halo Point and Halos

Recall that the halo point H is the light point for the
outgoing ray from the wedge. It is the point on the
celestial sphere apparently lit by the outgoing ray.
In making a halo simulation, we therefore express H
as a function of wedge orientation u and then plot H
on the celestial sphere as u varies. Continuing from
Eq. ~7!, we have

H 5 F~N, X, S! 5 F~uN0, uX0, S!, (9)

where N0 and X0 are the entry and exit normals for
the wedge in standard orientation. From Fig. 5 they
are

N0 5 N0~a! 5 @cos~ay2!, 0, sin~ay2!#,

X0 5 X0~a! 5 @cos~2ay2!, 0, sin~2ay2!#, (10)

where the wedge angle a is the angle between the
entry and exit faces of the wedge. Thus the halo
point can be regarded as a function of u, a, and S:

H~u, a, S! 5 F~uN0, uX0, S!. (11)

Fig. 5. Wedge in standard orientation. In standard orientation
coordinate vectors i, j, k. The left-hand diagram, with the vector
N and X as well as the wedge angle a. The right-hand diagram is
more or less toward the reader.
In most contexts, a or S is fixed and we then abbre-
viate H~u, a, S! to H~u, S!, H~u, a!, or H~u!, as ap-
propriate.

It is convenient to extend the definition of H so that
it is defined for all orientations u. We therefore de-
fine H~u, a, S! to be the nonsense symbol “no ray” in
case the right-hand side of Eq. ~11! is undefined, that
is, in case the ray cannot pass through the wedge in
the specified direction.

And although u has been assumed to be an orien-
tation, that is, an orthogonal matrix with determi-
nant 1, it will be useful in Sections 2 and 3 to be able
to replace u in Eq. ~11! with an arbitrary orthogonal
matrix w. The equation still makes sense—w is
used to give N and X, that is all. Then it is easy to
see, either formally from Eqs. ~2!, ~3!, and ~7!, or
intuitively, that for any orthogonal matrix w,

F~wN, wX, wS! 5 wF~N, X, S!, (12)

and then from Eq. ~11!

H~wu, a, wS! 5 wH~u, a, S!. (13)

For an orientation u and an orthogonal transfor-
mation w, we define the orientation w9~u! by

w9~u! 5
w u if det w 5 1, (14)

w u yref if det w 5 21, (15)

where the transformation yref is reflection in the
plane y 5 0. If u is the orientation of the wedge
having entry and exit normals N and X, then w9~u! is
the orientation of the wedge having entry and exit
normals wN and wX, by Eq. ~8!. Since yref N0 5 N0
and yref X0 5 X0 then by Eqs. ~11! and ~13!

H@w9~u!, a, wS# 5 H~wu, a, wS!, (16)

H@w9~u!, a, wS# 5 wH~u, a, S!. (17)

What is a halo?
At times we need to be clear about what we mean by
a halo. In the common idiom, which we follow, a
halo has an existence independent of any one sun

edge frame vectors A, B, C coincide with the standard Cartesian
j pointing into the paper, also shows the entry and exit normals
ore conventional view used in this paper, with the x-axis pointing
the w
B 5

the m
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position. The circumzenith arc is the circumzenith
arc, no matter where the sun happens to be. In this
sense a halo is determined by its set U of wedge
orientations and its wedge angle a. Formally, then,
the halo is the function

S3H~U, a, S!, (18)

where S ranges over the celestial sphere, and where

H~U, a, S!

5 $H~u, a, S! : u [ U, H~u, a, S! Þ “no ray”%. (19)

On the other hand, H~U, a, S! is the halo when the
sun is at S. It is a subset of the celestial sphere—
what one sees in the sky.

Thus there are two senses of “halo”. In the first
and more fundamental sense @Eq. ~18!# a halo is given
by U and a alone, whereas in the second @Eq. ~19!# it
is given by U, a, and S. In the first sense a halo is a
function, whereas in the second it is a value of the
function. Sometimes we speak of the shape or ap-
pearance of a halo to distinguish the second sense
from the first, but more often than not we use “halo”
indiscriminately to apply in either sense, and we
trust the meaning will be clear from the context.
But our official answer to “What is a halo?” is given by
Eq. ~18!, and it is important to think of halos in this
way when comparing and classifying them.

If U is the group SO~3! of all orientations, then
H~U, a, S! is a circular halo with center at S and with
radius that depends on a. If a 5 60, for example,
then the halo is the common 22° circular halo, and if
a 5 90 the halo is the 46° circular halo.

A halo H~U, a, S! will be empty if, as the wedge
assumes the orientations in U, no sunlight can enter
the entry face and exit the exit face.

F. Wedge Frame Versus Space Frame

Let A, B, C be the wedge frame as before. Then for
any vector V,

V 5 ~V ? A!A 1 ~V ? B!B 1 ~V ? C!C. (20)

Fig. 6. Left, wedge together with the wedge frame vectors A, B, C
a particular wedge orientation u. This is the view from space. M
This is therefore the view from the wedge. The wedge is shown he
of the subscripted vectors. The rotation u takes the wedge here t

u 5 j, Cu 5 k, Nu, Su to A, B, C, N, S @Eq. ~23!#. Right, vector
556 APPLIED OPTICS y Vol. 38, No. 9 y 20 March 1999
Thus V z A, V z B, V z C are the wedge coordinates of
V. The wedge coordinate vector of V, which gives the
appearance of V as seen from the wedge frame, is

Vu 5 ~V ? A, V ? B, V ? C! (21)

5 ~V ? A!i 1 ~V ? B!j 1 ~V ? C!k. (22)

Since ui 5 A, uj 5 B, and uk 5 C, then from Eqs. ~20!
and ~22!

V 5 uVu. (23)

We distinguish space vectors, which are fixed in
space, from wedge vectors, which are fixed in the
wedge. The vectors i, j, k, and S are space vectors,

hereas A, B, C, N, X, and P are wedge vectors. If
is a wedge vector, then Vu is constant, whereas V

depends on u. In fact, although we do not always do
o, we should really write V as V~u!. Then Eq. ~23!

becomes V~u! 5 uVu, and if V is a wedge vector, then
with e the identity matrix, we have V~e! 5 Ve 5 Vu,
so that

V~e! 5 Vu ~if V is a wedge vector!. (24)

hus Vu is the value of V when the wedge is in
tandard orientation.
The preceding equations are clear, but their inter-

retation can be tricky. We regard xyz-space as our
undamental space, with i 5 ~1, 0, 0!, j 5 ~0, 1, 0!,

5 ~0, 0, 1!. Vectors are represented as triples of
umbers and are normally plotted in xyz-space, re-
ardless of the geometric meaning of the numbers.
f in a space with xyz-axes we draw unsubscripted
ectors, such as S or N ~left diagram, Fig. 6!, then the
esult shows the world as seen from the space frame;
he vector S, showing the position of the sun as seen
rom space, is constant, whereas the vector N, show-
ng the entry normal to the wedge, depends on the
edge orientation u. If we draw subscripted vec-

ors, such as Su or Nu, also in xyz-space ~middle dia-
gram!, then the result shows the world as seen from
the wedge frame; the vector Nu is constant, whereas
Su depends on u. When it is not important to con-

tward normal N to the entry face, and sun vector S, all shown for
e, corresponding wedge coordinate vectors Au, Bu, Cu, Nu, and Su.
standard orientation in order to emphasize the geometric meaning
wedge in the left-hand diagram, and it takes the vectors Au 5 i,
, C, N, and S as seen from the wedge.
, ou
iddl

re in
o the
s A, B
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trast the wedge view and space view, we often draw
a diagram with no xyz-axes but with the wedge frame
vectors A, B, C indicated ~right diagram!. This di-
agram contains the same information as the previous
one, but it does so with less cumbersome notation. It
also gives us a more active feeling of riding with the
wedge ~Section 2!, rather than just a passive logging
of coordinate triples. But the diagram should not be
misconstrued as implying that the wedge is in stan-
dard orientation; we just happen to be viewing the
wedge from an unconventional angle.

Note that Nu 5 N0. We could do without the no-
ation “N0” and use “Nu” instead, but we prefer “N0”

in Eq. ~11! as a reminder that N0 is independent of u.
quations ~10! stand alone; the vector N0 depends

only on a. Similar remarks apply to X0.

G. Pole Pu

We now impose the Spin Vector Assumption @Eq. ~1!#.
t allows the set U of wedge orientations for a halo to
e specified by only two parameters—the zenith an-
le c of the spin vector, and the constant vector Pu,
hich is the spin vector P expressed in the wedge

frame. Informally the specification of U was de-
scribed in Subsection 1.B, using a nail and a wooden
wedge. Formally the reasoning is simply that, ac-
cording to Eq. ~1!, an orientation u is in U if and only
if P z k 5 cos c, or from Eq. ~23!

uPu z k 5 cos c. (25)

Therefore U is determined by c and Pu. We call Pu
the pole of the halo.

The pole Pu is a point on the unit sphere. For
example, it is at ~0, 61, 0! if P is parallel to the
refracting edge of the wedge. It is on the great circle
y 5 0 if P is perpendicular to the refracting edge.

The pole is a fundamental halo parameter. Since
a halo is determined by the set U of responsible
wedge orientations and by the wedge angle a, and
since U is determined by c and Pu, then a halo is

Fig. 7. Left, Bravais coordinate grid. Bravais coordinates ~u, d! are
re on the front hemisphere ~x $ 0!, mark the location of poles of h

with poles on the rear hemisphere ~x # 0!.# Right, same, but show
in Appendix A.
etermined by c, Pu, and a. Thus when c and a are
xed, a halo is determined by a choice of pole Pu, that

is, by a choice of a point on the ~unit! sphere; all halos
with fixed c and a are represented by points on the
sphere. In Appendix A we display some halo simu-
lations to illustrate how halos vary depending on the
location of their poles on the sphere. ~The simula-
tions also illustrate the dependence of halo shapes on
c, a, and sun elevation S, although in the case of c we
consider only two values, namely, c 5 0 and c 5 90.!
In Section 3 we compute the poles for known halos
and plausible halos; once the location of the pole on
the sphere is known ~together with c, a, and S!, the
appearance of the halo is determined.

H. Bravais Coordinates

In the figures of Appendix A each halo simulation is
located at its pole Pu on a Bravais coordinate grid.
Numbers ~u, d! are Bravais coordinates for the unit
vector Y 5 B~u, d!, where

B~u, d! 5 ~sin u cos d, cos u, 2sin u sin d!. (26)

Bravais coordinates are like ordinary spherical coor-
dinates but centered at ~0, 1, 0! rather than at ~0, 0,
1!. The angles u and d are the Bravais colatitude
and longitude of Y. The u 5 u0 curves are the Bra-
ais circles, and the d 5 d0 curves are the Bravais
eridians; see Fig. 7.
If V is a wedge vector and if Vu 5 B~u, d!, we also

say that ~u, d! are Bravais coordinates for V itself. In
this case

V 5 uVu 5 u B~u, d!

5 u~sin u cos d, cos u, 2sin u sin d! (27)

5 ~sin u cos d!A 1 ~cos u!B

2 ~sin u sin d!C. (28)

From this point of view Bravais coordinates move
with the wedge; comparison of Eq. ~28! with Eq. ~26!

rical coordinates centered at ~0, 1, 0!. The solid dots, all of which
hown in Appendix A. @Figure 37 of Appendix A also shows halos
stereographic projection from ~21, 0, 0!. This is the layout used
sphe
alos s

n in
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shows that they are spherical coordinates centered at
the wedge vector B rather than at ~0, 1, 0!.

By analogy with coordinates to be defined later,
Bravais coordinates are “B-centered”—they are
spherical coordinates centered at B or at Bu 5 ~0, 1,
0!, depending on the point of view.

I. Point Halo Examples

Figure 33 in Appendix A shows point halos ~c 5 0! for
27 representative poles Pu on the front hemisphere
~x $ 0!. For each halo the wedge angle a is 60 and
the sun elevation S is zero. For S 5 0, halos with
poles on the rear hemisphere can be inferred from
those on the front using Rule 2 or Rule 4 in Subsec-
tion 2.H. If one is willing to interpolate among the
halos shown, the figure therefore shows all possible
point halos having the given values of a and S. A
halo that may look familiar is the one at ~0, 1, 0!—it
is the right 22° parhelion.

Figures 34–36 are similar to Fig. 33 but with dif-
ferent sun elevations. Figures 38–41 are similar to
Fig. 34 but with different wedge angles. Figure 37 is
similar to Fig. 34, except that the halos have their
poles on the rear hemisphere. Point halos with
poles on the rear hemisphere, especially the upper
part, tend to require negative S in order to be non-
empty, with halos further up and to the rear requir-
ing ever more negative S. Such halos are therefore
uncommon in the literature. The Nonempty Halos
Theorem, Subsection 2.F, gives a precise condition for
determining when a halo is nonempty.

Point halos, or rather their sets of wedge orienta-
tions, are always one-dimensional, like those in Figs.
33–41.

J. Great Circle Halo Examples

Figures 42–49 are like Figs. 33–41 but show great
circle halos ~c 5 90! instead of point halos ~c 5 0!.

he set of wedge orientations is now two-
imensional, and the halos look like folded sheets
ather than the curves of the preceding figures. The
ost familiar halo in these figures is the one at ~0,
1, 0! in Figs. 42–45—it consists of the upper and

ower tangent arcs to the common 22° halo.
For great circle halos Eq. ~25! shows that the point

u and its antipode 2Pu give the same set of wedge
rientations and hence the same halo. The front
emisphere therefore suffices to present all great cir-
le halos.

It is impossible in a limited space to collect halo
iagrams for a comprehensive range of wedge angles
nd sun elevations. We nevertheless imagine that
his has been done and that the figures in Appendix

are included as a small part of the collection. The
esult is the halo atlas mentioned in the beginning,
ontaining “all possible halos”. In principle, the halo
tlas consists of all halos that satisfy the Spin Vector
ssumption, with a halo for each choice of c, Pu, and
.
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2. Riding the Wedge to Analyze the Atlas

A. Zenith Locus and Halo-Making Sets

In Section 1 we used points on the ~unit! sphere S2 to
represent halos. At a more fundamental level, the
sphere was being used to organize the group SO~3! of
orientations, or equivalently, it was being used to
depict the world as seen by a rider on the wedge, as
we will see.

From Eqs. ~21! and ~23!, the vector ku 5 u21k gives
he appearance of the zenith point k as seen from the
edge with orientation u. If U is a set of orienta-

ions, then the zenith locus of U is the set K 5 $ku :
u [ U%. The zenith locus is the path of the zenith
point as seen by the wedge rider while the wedge
assumes the orientations in U.

In addition to k, other space vectors also have their
corresponding loci as seen from the wedge. The sun
locus, for example, is the set S 5 $Su : u [ U%, the
path of the sun as seen by the wedge rider. It too
will play a role, but the zenith locus is special, as we
will see momentarily.

We do not impose the Spin Vector Assumption @Eq.
~1!# at this time but instead make the much weaker
and completely plausible assumption that all azi-
muthal angles are equally likely for a wedge. There-
fore, if u is in a set of wedge orientations for a halo,
then so is zrot~f! z u, where the matrix zrot~f! is
rotation through angle f about the z-axis. Formally
we define a set U of orientations to be a halo-making
set if it is azimuth invariant:

u [ U implies zrot~f! z u [ U for all f. (29)

The definition is obviously unrealistic in that it counts
too many sets of orientations as halo-making sets, but
every set of wedge orientations for a real halo would fit
the definition. In particular, if the Spin Vector As-
sumption is satisfied, then the set of wedge orienta-
tions is a halo-making set, according to Eq. ~25!.

Let Z be the subgroup of SO~3! consisting of rota-
tions zrot~f! about the z-axis. A rotation z is in Z if
and only if z k 5 k. In terms of Z, a set U of orien-
tations is a halo-making set if and only if

ZU # U. (30)

The coset containing an orientation u is the set

Zu 5 $zu : z [ Z%. (31)

The collection of all cosets is a partition3 of SO~3!, and
two orientations u and v are in the same coset if and
only if uv21 [ Z or, in words, if and only if u and v
differ by a rotation about the z-axis. The halo-
making sets are exactly the subsets of SO~3! that are
unions of cosets.

The following theorem shows that the halo-making
sets are characterized by their zenith loci, which of
course are just subsets of the sphere and can be easily
visualized.
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Theorem—Characterization of Halo-Making Sets
For each subset K of the sphere, let U~K! 5 $u : ku [
K%. Then U~K! is a halo-making set, its zenith locus
is K, and the mapping K 3 U~K! is a 1–1 correspon-
dence between the subsets of the sphere and the halo-
making sets. Moreover,

U~ø $Ka%! 5 ø $U~Ka!%, (32)

U~ù $Ka%! 5 ù $U~Ka!%, (33)

U~K1! # U~K2! if and only if K1 # K2. (34)

Proof
If z [ Z, then kzu 5 ~zu!21 k 5 u21 z21 k 5 u21 k 5
ku, so U~K! is a halo-making set. Define p: SO~3!3
S2 by p~u! 5 ku. We will show that

p@p21~K!# 5 K, (35)

p21@p~U!# 5 U ~if U is a halo-making set!. (36)

rom Eqs. ~35! and ~36! and from the fact that U~K!
p21~K!, it follows that K 3 U~K! is indeed a 1–1

correspondence between the subsets of the sphere
and the halo-making sets. Equation ~35! holds be-
cause p is subjective. To show Eq. ~36!, let v [
p21@p~U!#. Then p~v! 5 p~u! for some u in U, so v21

k 5 u21 k and vu21 k 5 k. Then vu21 [ Z, and v [
u # U, from Eq. ~30!. Therefore p21@p~U!# # U.
nd U # p21@p~U!# for any set U, so Eq. ~36! is

proved. Since the zenith locus of any set U is p~U!,
then the zenith locus of U~K! is K, from Eq. ~35!.
Since U~K! 5 p21~K! and since for any function f the
set function f21 preserves set unions and intersec-
tions, then Eqs. ~32! and ~33! are also proved. Equa-
tion ~34! can be proved using Eq. ~35!. This
completes the proof.

Summarizing the relation between a halo-making
set U and its zenith locus K, we have

U 5 p21~K! 5 $u : ku [ K%

5 $u : uY 5 k for some Y in K%, (37)

Fig. 8. Left, circle K 5 K~c, Pu! with radius c and center Pu. Th
u according to the Spin Vector Assumption. Here c 5 30. Rig
K 5 p~U! 5 $ku : u [ U%

5 $Y : uY 5 k for some u in U%. (38)

The preceding theorem says that subsets K of the
phere correspond in a natural way to halo-making
ets U; the set K corresponding to U is the zenith
ocus of U. Suppose now that U is the set of wedge
rientations determined by c and Pu according to the

Spin Vector Assumption—then what is the zenith
locus of U? According to the next theorem, it is a
ircle. Of all the subsets of the sphere, each being
he zenith locus of a halo-making set, the Spin Vector
ssumption rejects all but the circles.

heorem—Halo-Making Sets when the Spin Vector
ssumption is Satisfied
or 0 # c # 180 and for Pu on the sphere, the set of

wedge orientations determined by c and Pu according
to the Spin Vector Assumption @Eq. ~1!# is U@K~c,

u!#, where K~c, Pu! is the circle with angular radius
c and center Pu, and where the meaning of U is given
in the preceding theorem.

In other words, the zenith locus of the halo-making
set determined by c and Pu is the circle with radius
c and center Pu ~Fig. 8!. In particular, the zenith
ocus of a point halo ~c 5 0 or 180! is a point, and the
enith locus of a great circle halo ~c 5 90! is a great

circle.

Proof of the Theorem
An orientation u is in the set of wedge orientations
determined by c and PuN P z k 5 cos cN Pu z ku 5
cos c N ku [ K~c, Pu! N u [ U@K~c, Pu!#.

The preceding two theorems do not involve wedge
ngle a; they are statements only about orientations.
he first theorem says that a halo-making set of ori-
ntations can be given by choosing a subset of the
phere, namely, the zenith locus. The second says
hat, if the Spin Vector Assumption holds, then the
ubset will be the circle with radius c and center Pu.

To get a halo in this case, one therefore chooses a
circle, together with a. If a is fixed, one gets a halo
by choosing a circle. The circle, rather than c or Pu,

cle is the zenith locus of the halo-making set determined by c and
me, but with c 5 90, so that K is a great circle.
e cir
ht, sa
20 March 1999 y Vol. 38, No. 9 y APPLIED OPTICS 1559
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is often the fundamental thing, whereas c and Pu are
simply devices for keeping track of the circle.

If a circle K on the sphere has radius c and pole Pu,
then it also has radius 180 2 c and pole 2Pu. If K
is not a great circle, then it has a unique pole with c
, 90. Thus for a point halo we normally choose the
pole so that c 5 0 and Pu 5 ku, rather than c 5 180
and Pu 5 2ku. If K is a great circle, however, there
s no natural way of choosing between its two poles.
very great circle halo has two poles, both corre-
ponding to the single radius c 5 90. See Figs. 42–
9, for example, where diametrically opposite halos
n the outer circle ~x 5 0! of each figure have antip-

odal Pu and are therefore the same halo.
The cosets are the smallest nonempty halo-making

sets; they are the halo-making sets whose zenith loci
consist of single points, the zenith locus of Zu being
$ku%. The coset Zu is therefore the halo-making set
for a point halo with Pu 5 ku. Since every halo-
making set is a union of cosets, then every halo is a
union of point halos.

Halo Containments, Unions, and Intersections
In keeping with Eq. ~18!, we regard one halo as a
subset of another if

H~U1, a1, S! # H~U2, a2, S! for all S, (39)

where U1 and U2 are the respective sets of wedge
orientations, and a1 and a2 are the respective wedge
angles. Thus the containment is required to hold no
matter where the sun happens to be. This may seem
like a strong requirement, since both halos are apt to
change dramatically as the sun moves. Neverthe-
less, Eqs. ~19! and ~34! show that, if a1 5 a2, then halo
containments are easily inferred from containment
relations between the corresponding zenith loci,
which are easy to visualize on the sphere. Similar
remarks apply to halo unions and intersections.

Thus, as already mentioned, every halo is a union
of point halos. In particular, each great circle halo,
whose zenith locus is a great circle on the sphere, is a
union of point halos, each corresponding to a point on
the great circle. In Fig. 43, for example, the halo
with Pu 5 ~0, 61, 0!—the upper and lower tangent
rcs—is the union of all the point halos having Pu on

the great circle y 5 0.
Any two great circle halos contain two point halos

n common, since their corresponding great circles
ntersect in two points ~or coincide!. Similarly, any
wo point halos are subsets of some great circle halo.

B. Vectors S and H Revisited

We now reexamine the relation between the light
points S and H of the incoming and outgoing rays to
he wedge. The relation is of course contained in Eq.
7!, but we wish to stress the geometric point of view
xpressed in the fundamental Fig. 3. We emphasize
hat to get H from S, we simply project the inner

sphere to the outer sphere parallel to the entry face
normal N, and then project the outer sphere back to
he inner sphere parallel to the exit face normal X.
560 APPLIED OPTICS y Vol. 38, No. 9 y 20 March 1999
Not all rays can pass through the wedge in the
prescribed way, that is, by entering the entry face and
exiting the exit face. For rays that can do so, the
light points before entering make up the entry region
on the sphere, those after exiting make up the exit
region. These regions can be thought of either as
moving with the wedge or as fixed, depending on
whether they are viewed from space or from the
wedge.

The mapping from S to H is a 1–1 correspondence
between the entry and exit regions. Classically the
mapping was studied by first proving that H z B 5 S z
B, which for us is obvious from Fig. 3, since B ~not
shown in Fig. 3! is orthogonal to the brim of the
helmet in the figure. The points S and H therefore
differ by a rotation about point B, as in Fig. 9. The
amount of rotation is d 5 d~S! 5 d~H! 2 d~S!, which
is the ~negative of the! deviation between S and H but
projected onto the normal plane—the plane occupied
by the brim of the helmet. Classically4 the angle d
was calculated using Bravais’ law and was then used
to get H. Bravais’ law says that, if the vectors S and
H are projected to the normal plane, then the pro-
jected vectors satisfy Snell’s law but with the refrac-
tive index n replaced by ~n2 2 cos2 u!1y2ysin u. This
can be seen by constructing the two spheres for which
the two dark concentric circles bounding the brim are
great circles, by noting that the tips of the vectors S
and H do not change when they are projected to the
normal plane, and by observing that the radii of the
two circles are ~n2 2 cos2 u!1y2 and sin u. But for us

ravais’ law is of historical interest only.
We get another picture of the relation between S

nd H by considering the deviation D 5 D~S! between
he two, which is given by

cos D 5 S ? H. (40)

hus D is measured along a great circle, whereas d is
easured along a Bravais circle. Figure 9 shows the

evel curves of D, which are in the entry region.
heir images are shown as well, in the exit region,
ach image of a curve being the reflection, in the
orizontal plane, of the original curve; this can be
asily seen by drawing the N- and X-projections.
he mapping from S to H, however, is not a reflection,
ut rather takes the lower “half” of one curve to the
ower half of the other, and similarly for the upper
alves. So from the level curves of D together with
heir images, H can be located as a function of S, since

and S are on the same Bravais circle.
The deviation D is known to be minimum exactly

when T 5 nA. ~See Fig. 3 for T and Fig. 10 for A.!
By drawing S, T, and H appropriately on concentric
circles of radius 1 and n, we easily find that the
minimum value Dm of the deviation is given by

sin@~a 1 Dm!y2# 5 n sin~ay2!. (41)

The values of S and H in this minimum deviation
configuration are the minimum deviation entry and
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exit vectors D and E. From their symmetrical place-
ment and from their separation Dm,

D 5 cos~2Dmy2! A 1 sin~2Dmy2! C (42)

or

Du 5 @cos~2Dmy2!, 0, sin~2Dmy2!#. (43)

Similarly,

Eu 5 @cos~Dmy2!, 0, sin~Dmy2!#. (44)

The ray path for minimum deviation is perpendicular
to the refracting edge and has the well-known sym-
metric form.

We now have several equivalent characterizations
of minimum deviation:

D~S! is minimum

iff D~S! 5 Dm

iff S 5 D

iff T 5 nA

iff H 5 E. (45)

Figure 10 shows how to find the entry and exit
egions. Examination of the figure reveals that the
ower boundaries of the regions correspond to grazing
ntry, and the upper boundaries to grazing exit.

Fig. 9. Above left, entry and exit regions and typical sun point S
two regions enclosed by the heavy curves—it consists of the direct
when S lies outside the entry region there is no H. The exit region
of the directions from which the outgoing light can appear to com
and H are on the same Bravais circle, then they differ by a rota
stereographic projection, as in Fig. 7, and with the addition of leve
exit region. The vectors D and E are the minimum deviation en
E. The apparent difference in sizes of the entry regions in the two
center belongs at the center of the sphere. Here a 5 80.2.
Figure 10 can be used to derive analytic descrip-
ions of the boundaries, which are needed to apply the
onempty Halos Theorem, Subsection 2.F. To pa-

ameterize the upper boundary of the entry region,
rst parameterize the great circle X z H 5 0 on the

inner sphere, which consists of light points H of rays
that have originated within the wedge and have ex-
ited the exit face tangentially. In the lower left di-
agram of Fig. 10 this is the circle where the lower
cylinder is tangent to the inner sphere. It is a union
of the two Bravais meridians d 5 ay2 6 90, and a
typical point on it, from Eq. ~27!, is

u B~u, ay2 2 90!, (46)

where u is allowed to range over 0 # u # 360. The
-projection of the point to the outer sphere is

Tx~u! 5 u B~u, ay2 2 90! 1 ~n2 2 1!1y2 X, (47)

and the upper boundary of the region T in the figure
is parameterized by Tx~u!, u0 # u # 180 2 u0, where
u0 can be found by requiring Tx~u! to be on the equa-
tor:

sin u0 5 ~n2 2 1!1y2 tan~ay2!. (48)

halo point H. The entry region of the sphere is the lower of the
from which light can originate and then pass through the wedge;
upper of the two regions enclosed by the heavy curves—it consists

will always be in the exit region. Since from Fig. 3 the points S
through an angle d 5 d~S! about B. Right, same, but seen in
es of the deviation D, in the entry region, and their images in the

nd exit vectors; D is minimum when S 5 D or, equivalently, H 5
rams is due to the stereographic projection. The wedge at lower
and
ions
is the
e; H
tion

l curv
try a
diag
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The upper boundary of the entry region can be
found by N-projecting back to the inner sphere. A
typical point is

Sx~u! 5 pr~Tx~u!, N, 1!, u0 # u # 180 2 u0. (49)

The point Sx~u! is the light point of an incoming ray
that will pass through the wedge and experience
grazing exit.

The lower boundary is part of the Bravais meridian
d 5 2ay2 1 90. A typical point is

Sn~u! 5 u B~u, 2ay2 1 90!, u0 # u # 180 2 u0. (50)

The point Sn~u! is the light point of an incoming ray
hat will pass through the wedge but with grazing
ntry.
562 APPLIED OPTICS y Vol. 38, No. 9 y 20 March 1999
The wedge angle in Figs. 9 and 10 is a 5 80.2,
hich is the value for the 35° circular halo, from Eq.

41!. Figures 52 and 59 show the entry region for a
28 and a 5 90, which are the values for the 9° and

6° circular halos. The dramatic dependence on a is
asy to understand by considering the region T be-
ween the two cylinders in Fig. 10. As a increases, T
hrinks, and the entry and exit regions shrink with it.
As a continues to increase, it eventually reaches a

alue amax at which the entry and exit regions each
consist of a single point, D and E, respectively. Any
ray passing through such a wedge will enter from
direction D and exit from direction E. Wedges hav-
ing larger a cannot pass light at all. The value amax
is found from Eq. ~48! with u0 5 90; for n 5 1.31 it is
amax 5 99.5.
Fig. 10. Finding the entry region. Above left, reference diagram showing concentric spheres of radii 1 and n, with both spheres cut away
completely to show the wedge with entry and exit normals N and X. Compare Fig. 3. Above right, N-projection of the inner sphere to
he outer. The region of the outer sphere within the cylinder consists of light points of rays that have entered at the entry face. Below
eft, same, but with X-projection of the outer sphere to the inner. The region of the outer sphere within the new cylinder consists of light
oints of rays that originate within the wedge and that can exit the exit face. The region T on the outer sphere and common to the two
ylinders therefore consists of light points of rays within the wedge that have entered the entry face and that can exit the exit face. Below
ight, the entry region—the result of N-projecting T back to the inner sphere. This region consists of light points of rays outside the wedge
hat can enter the entry face and exit the exit face. Similarly, X-projecting T would give the exit region. See also Fig. 9. Here a 5 80.2.
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C. Creation of a Halo

We now visualize the creation of a halo, but first from
the point of view of a rider on the wedge. It is largely
a matter of adding xyz-axes appropriately in Fig. 3
nd subscripting all vectors with u. The vector Su is
he direction of the sun as seen from the wedge, and

u is similarly the direction of the halo point. To get
Hu from Su, we project Su to the outer sphere parallel
to Nu, getting Tu, and then project Tu back to the
nner sphere parallel to Xu, getting Hu. The formal

reasoning, from Eqs. ~11!, ~12!, and ~23!, is

Hu 5 F~N, X, S!u 5 u21F~N, X, S!

5 F~u21N, u21X, u21S! 5 F~Nu, Xu, Su!. (51)

But there is a difference between the space per-
spective and the wedge perspective. The vectors N

Fig. 11. Creation of a point halo. Above left, view from the wedge
shown. The points Su and Hu are the sun and corresponding halo
raced out by Su; it is a circle with center ku and radius s 5 90 2 S
ath traced out by Hu. The wedge at lower left belongs at the cent
nd is included to emphasize the geometric meaning of the subscr
pper left of the sphere. Both upper diagrams show the triangl
iagram is the view from the wedge, the right is the view from spa
ight, namely, D, t, h, f are the deviation, bearing, zenith angle, an
hat D and t are sufficient to locate H with respect to S. Below
irectly toward the sun, as in the halo diagrams of Appendix A. @
and X, giving the face normals from the space per-
spective, depend on the wedge orientation u, but Nu
and Xu, giving the wedge perspective, are fixed.
Similarly, S is fixed but Su varies. The sun locus S
is the path traced out by Su as the wedge changes its
orientation u, and the halo point locus H is the path
traced out by Hu. If the location of Su on the sun
locus is known, then Hu is determined. Where,
then, is the sun locus?

Since every halo is a union of point halos, we con-
sider first the case of a point halo. A point halo has
constant ku, the zenith point as seen from the wedge.
If s 5 90 2 S is the zenith angle of the sun, that is,
f S is at angular distance s from k, then a rider on

the wedge sees Su at angular distance s from ku; the
un locus S is a circle of radius s about ku, as in Fig.

11. When Su lies on the part of S outside the entry

e halo has constant ku—zenith point as seen from the wedge—as
t as seen from the wedge. The curve S is the sun locus, the path
zenith angle of the sun. The curve H is the halo point locus, the
he left-hand sphere. The wedge is shown in standard orientation
vectors. Above right, view from space, with the halo at the far

ose vertices are the zenith, the sun, and the halo point; the left
The meaning of D, t, h, f, s at left is therefore the same as at the
muth of the halo point, and s is the zenith angle of the sun. Note
, same halo but seen from inside the celestial sphere and looking
Pu 5 B~30, 245!, a 5 90, s 5 65 ~hence S 5 25!#
. Th
poin
, the

er of t
ipted
e wh
ce.
d azi
right
ku 5
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region, the light cannot pass through the wedge and
there is no Hu. But as Su traces out the part of S

ithin the entry region, then Hu traces out H in the
exit region.

The intelligent wedge rider can also construct the
halo itself, as seen from space. The points ku and Su
need only be rotated to k and S; the same rotation—it
is of course u—must take Hu to H, thus locating H.
The unlikely cases s 5 0, 180 are slightly different,
ut easy.! Thus the construction of the halo pro-
eeds point by point; there is no single rotation that
akes the curve H to the halo. We next consider the
onstruction in detail and discover that the shape of
he halo is predictable without elaborate calculation.

D. Why the Halos Look the Way They Do

It is crucial to recognize that ku, Su, and Hu are
indeed the zenith, the sun, and the halo point, just
seen from the unconventional perspective of the
wedge. In Fig. 11, then, the triangle k S H at the
right can be trivially reconstructed from the triangle
ku Su Hu at the left, thus locating the halo point H on
the celestial sphere. In particular, the angular dis-
tance D between Su and Hu in the left diagram must
be the deviation between S and H. Similarly, the

Fig. 12. Creation of another point halo. As in Fig. 11
traverses the sun locus S, and Hu simultaneously trave
point locus H. In this figure, however, the arc of S wit
region subtends a much larger angle from ku, thus prod
variation in t as Su varies, so that the halo is no longer
narrow sector but instead extends more than 90° along
side the circular halo. @ku 5 B~71, 41!, a 5 80.2, s 5
564 APPLIED OPTICS y Vol. 38, No. 9 y 20 March 1999
angular distance h between ku and Hu must be the
zenith angle of H. And the angle t must be the
bearing of H from S, that is, the angle from the ver-
tical arc S k to the arc S H.

Now suppose we wish to start from scratch and
recreate the halo, at least qualitatively. We are
therefore given ku, a, and s. Then S is known from
ku and s, and the entry and exit regions are known
from a. Because the arc of S that is within the entry
region subtends a relatively small angle as seen from
ku, and because Hu is on the same Bravais circle as
Su, then the angle tvar—the variation in t as Su varies
~not shown!—is small. But since tvar is small in the
left diagram, then the same is true in the right, and
hence the halo is confined to a rather narrow sector
having vertex at the sun and having sector angle tvar.
By examining the way Su cuts across the level curves
of D shown in Fig. 9, or rather their analogs for the
wedge angle under consideration here, we see that D
varies from a relative maximum where Su enters the
entry region, down to a minimum in the interior, and
then back up to a relative maximum where it exits.
So the halo must be a U-shaped curve, with the bot-
tom of the U pointing approximately toward the sun.
Finally, as viewed from inside the celestial sphere,

point Su

the halo
he entry
a wider

ned to a
just out-

5 60!#
, the
rses
hin t
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30 ~S
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the bearing of the halo from the sun must be about
the same as the bearing of ku from Du. This halo is
the right Parry supralateral arc, which is the point
halo with a 5 90 and ku 5 B~30, 245! @i.e., ku has
Bravais coordinates ~u, d! 5 ~30, 245!#. In the two
right-hand diagrams of Fig. 11 the halo is shown with
S 5 25, and in Fig. 41 with S 5 20. ~Recall that Pu
5 ku for point halos.!

Any point halo can be understood by making the
drawing comparable with Fig. 11 and by considering
the arc of S within the entry region. Figure 11 is
typical of point halos with ku in a broad and vaguely
defined annular region centered at Du and approxi-

ately 90° away, and with the sun not too far above
r below the horizon. The arc of S that is within the
ntry region subtends a relatively small angle as seen
rom ku, and the halo is therefore a more or less

U-shaped curve confined to a narrow sector, with the
bearing of the halo from the sun being about the same
as the bearing of ku from Du. All of the above is
more nearly correct when a is large, so that the entry
region is small; see Figs. 33–41, especially Figs. 40
and 41.

For comparison, consider the point halo in Fig. 12.
The wedge angle is smaller than in Fig. 11, and so the
entry region is larger. Also, ku is much closer to the
entry region ~within it, in fact! and s is much smaller,
so that the arc of S within the entry region now
subtends a considerable angle as seen from ku, and
tvar is no longer small but rather 90° or more. This
same tvar is seen in the halo itself, where the halo
xtends a little more than 90° along and just outside
he circular halo.

For ku which, like this one, are within the entry

Fig. 13. Creation of another point halo. The upper diagram
shows the entry region together with the sun locus S and level
urves of the deviation D. Tangencies of S with the level curves
ive relative extrema of D, which can then be located on the halo
tself, in the lower diagram. Here there are two relative minima
nd two relative maxima. @ku 5 B~95, 16!, a 5 60, s 5 25 ~S 5 65!#
egion, sufficiently small s will give a sun locus S that
s entirely in the entry region. Then tvar $ 360° and

the halo is a closed loop encircling the sun, as in Fig.
13. There the level curves of D indicate that D
hould have two relative minima and two relative
axima on S, and this is borne out by the halo itself.
igure 36 contains four other examples of halos with
entirely in the entry region, but in contrast to Fig.

3, the point Du lies outside S, and the level curve
picture as well as the halos themselves suggest that
there is just one relative maximum and one relative
minimum for each.

The halos at Pu 5 ~1, 0, 0! in Figs. 34 and 39
rovide one final interesting feature—each is discon-
ected. This is not surprising if one considers the
ortion of the sun locus that lies in the entry region,
or it too is disconnected.

In either Fig. 11 or Fig. 12 the difference between
he left- and right-hand diagrams—wedge view ver-
us space view—is not so much in where the view-
oint is located at any one moment. If the sun locus,
alo point locus, and the halo itself are removed from
he diagrams, leaving only a snapshot taken at a
xed moment, then the two diagrams hardly differ,
eing congruent by way of the rotation u. The es-
ential difference between the left- and right-hand
iagrams is in how the views change from moment to
oment. In the left-hand diagram the viewpoint is
xed in the wedge, and so space vectors, like the sun
ector, appear to move in circles about the zenith.
n the right-hand diagram the viewpoint is fixed in
pace, and wedge vectors appear to move in circles
bout the zenith. The halo point is neither a wedge
ector nor a space vector, and from either perspective
t appears to move, tracing out the halo point locus
rom the wedge perspective and tracing out the halo
tself from the space perspective. In general the two
urves are not congruent.

To help in thinking about the creation of point
alos, we imagine a more ambitious version of the
ail and wooden wedge model of Subsection 1.B. It
esembles a commercially available star globe—a
arge transparent plastic sphere with a rod extending
iametrically through it from top to bottom. Instead
f the rod skewering a miniature Earth at the center
f the sphere, however, the rod skewers the wedge,
nd in such a way that, as seen from the wedge, the
up” end of the rod is in the direction of ku. The

wedge, then, is at the center of the sphere, with both
wedge and sphere fixed to the rod. On the sphere we
paint the entry and exit regions, the minimum devi-
ation entry and exit vectors, and the level curves of D
and their images, making sure to locate them cor-
rectly with respect to the wedge ~Fig. 9!. We place
the entire contraption inside a slightly larger trans-
parent sphere fixed in space, and we are ready to
create the halo. Wedge, inner sphere, and rod rotate
together, with the rod remaining vertical. To find
the halo point at some instant, we stop the rotation.
A ray from the sun proceeding toward the center of
the spheres will pierce both spheres at the sun point,
the same point on both spheres. On each sphere we
20 March 1999 y Vol. 38, No. 9 y APPLIED OPTICS 1565
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mark the point with a black dot. Knowing the sun
point, we then use the Bravais meridians and the
level curves to locate the halo point, also the same on
both spheres. We mark it with a red dot on each
sphere. For the given instant that is all there is to it.
Then the process is repeated for other instants giving
other stages in the rotation. As more and more
black and red dots accumulate, the black dots ~sun

oints! on the outer sphere all coincide, and the black
ots on the inner sphere form a circle, essentially the
un locus. The red dots ~halo points! on the inner
phere form the halo point locus, and the red dots on
he outer sphere form the halo.

We have seen how to construct point halos. Great
ircle halos, being unions of point halos, can in prin-
iple be constructed from the point halos, although in
ractice this can put some demands on the imagina-
ion. Figure 14 shows the creation of a great circle
alo.

E. Other Ray Paths

The ray paths for halos that we consider in this paper
enter the entry face of the wedge and directly exit the
exit face, with no intervening internal reflections.
Our methods, however, can easily be extended to cer-

Fig. 14. Creation of a great circle halo. Above, left and rig
from the wedge. The zenith locus is the great circle K with
as shown, and the sun locus is the large annular region S
ing of circles. Each point ku on K is the center of a circle
s which is traced out by Su, and S is the union of all such
In the exit region are the corresponding curves traced ou
which make up the halo point locus H. See also Fig. 12,
ku, Su, and Hu are the same as the particular ku, Su, and H
here; the point halo in that figure is a subset of the great ci
here. Below right, the great circle halo, shown as a union
halos corresponding to the curves at upper right. A more
tional depiction of the halo is given in Fig. 18. @Pu 5 B~6
a 5 80.2, s 5 30 ~S 5 60!#
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tain ray paths involving internal reflections. Ray
paths for subparhelia, Wegener arcs, and Hastings
arcs, for example, have an internal reflection off the
plane perpendicular to the entry and exit faces.
How would such a reflection change a figure such as
Fig. 11? In the left-hand diagram the halo point Hu
and hence the halo locus H would be reflected across
the Bravais equator y 5 0. The halo itself, in the
right-hand diagram, would change as well, but in a
less transparent way. Thus for each halo in the ex-
isting atlas, Appendix A, there would be a new halo,
with a simple connection between the two, although
the two halos in general would look quite different
from space. An entire new atlas of simulations
would result. A new atlas would likewise result
from any other new ray path considered.

F. Empty Halos

The halo simulations of Appendix A show many halos
that are empty at the given sun elevation. Figure 11
shows how this can happen: if s were somewhat
smaller, then the sun locus S would miss the entry
region entirely. So point halos can easily be empty,
especially if the wedge angle is large, so that the
entry region is small, or if the sun is high, so that the
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radius s of S is small. Thus Fig. 41, with a 5 90, has
everal empty halos, and Fig. 36, with S 5 80, has
any. In Section 1 we mentioned that point halos
ith Pu ~5 ku! on the upper rear of the sphere tend

to require the sun to be below the horizon in order to
be nonempty. The reason is now clear: for such
halos, s must be large for S to reach the entry region.

Great circle halos are much less apt to be non-
empty, because of their much larger sun locus, as in
Fig. 14. In fact, the halo in that figure is never
empty, regardless of sun elevation, since its zenith
locus passes through the entry region. But the su-
pralateral arc ~Subsection 3.B! is a familiar great
circle halo which is empty even for moderate sun
elevations. And any great circle halo whose zenith
locus misses the entry region will be empty for suffi-
ciently high sun; two such empty halos can be seen in
Fig. 45.

To summarize, a halo with zenith locus K, wedge
angle a, and solar zenith angle s is nonempty if and
only if there is a point of K and a point in the entry
region that are at angular distance s from each other,

Fig. 15. Minimum and maximum angular distances s1 and s2

from Pu 5 B~30, 245! to the a 5 90 entry region. Here s1 5 58
and s2 5 117. The point halo with pole Pu and wedge angle a is
nonempty for s1 # s # s2. The great circle halo with this pole and
wedge angle is never empty, since s1 # 90 # s2, so that the zenith
ocus passes through the entry region.

Fig. 16. Left, D-centered coordinates ~s, t!. Middle, S-centered c
celestial sphere and looking directly at the sun.
since in this case the sun locus will intersect the entry
region, and otherwise not. For point and great circle
halos there is the following consequence:

Nonempty Halos Theorem
For a halo with pole Pu and wedge angle a # amax, let
s1 and s2 be the angular distances from Pu to the
nearest and farthest points of the entry region ~0 # s1
# s2 # 180!. Let s be the solar zenith angle.

~i! If the halo is a point halo ~c 5 0!, then it is
onempty if and only if s1 # s # s2.
~ii! If the halo is a great circle halo, then either s1 #

90 # s2 ~K passes through the entry region!, in which
ase the halo is never empty, or, without loss of gen-
rality, s1 # s2 , 90 ~the entry region and Pu are on

the same side of K!, in which case the halo is non-
empty if and only if 90 2 s2 # s # 90 1 s2, that is, 2s2
# S # s2.

To apply the theorem we need to be able to calcu-
late s1 and s2. A typical point on the upper boundary
of the entry region is Sx~u!u, where u0 # u # 180 2 u0
@Eq. ~49!#. The angular distance from Pu to Sx~u!u is
s~u! 5 arccos@Sx~u!u z Pu#. We evaluate s~u! at
closely spaced u and take the minimum and maxi-
mum of the resulting finite set, and then proceed
analogously with Sn~u!u for the lower boundary.
The smaller of the resulting two minima is s1, except
that s1 5 0 if Pu is in the entry region. The larger of
the two maxima is s2, except that s2 5 180 if 2Pu is
in the entry region.

For an illustration of the theorem see Fig. 15,
where Pu 5 B~30, 245! and where the entry region is
for wedge angle a 5 90. We compute s1 5 58 and s2
5 117. According to the theorem, the point halo
with this pole and wedge angle is nonempty for 58 #
s # 117, that is, for 227 # S # 32. The great circle
halo with this pole and wedge angle is never empty,
since 58 # 90 # 117.

G. Contact Points with the Circular Halo

The contact points of a halo with the ~inner boundary
of the! relevant circular halo are important features.
To analyze them, we introduce spherical coordinate

inates ~D, t!. Right, S-centered coordinates seen from inside the
oord
20 March 1999 y Vol. 38, No. 9 y APPLIED OPTICS 1567



b
w
h

o
a
e

v

1

systems centered at the minimum deviation vector
Du and at the sun S. The point D~s, t! has
D-centered coordinates ~s, t! as shown in Fig. 16.
The coordinate s is the angular distance from D~s, t!
to Du, and t is the bearing of D~s, t! from Du, with
positive bearing being clockwise. The point S~D, t!
has S-centered coordinates ~D, t!. The coordinate D
is the angular distance from S~D, t! to S, and t is the
earing of S~D, t! from S. Positive bearing is clock-
ise as viewed from inside the celestial sphere, as
alos are normally viewed. We have

D~s, t! 5 rot~2t, Du! z D~s, 0! (52)

S~D, t! 5 rot~t, S! z S~D, 0!, (53)

where rot~t, Y! is rotation through angle t about the
point Y.

An orientation u is said to be a minimum deviation
orientation if, for a wedge with orientation u, the
deviation D between the incoming and outgoing rays
is a minimum with respect to all orientations. In
this case, there is a close and beautiful relation be-
tween ku and H, a relation that is perhaps already

Fig. 17. Above left, the points ku, Su, and Hu—the zen
sun point, and halo point as seen from the wedge—wh
minimum deviation orientation, that is, when Su 5 Du.
with Fig. 12, in which Su Þ Du. @a 5 80.2, s 5 30 ~S 5 60!
Above right, the same three points but seen from the spa
Right, same, but viewed from inside the celestial sphere.
identical bearings t of H here and of ku in the upper left
568 APPLIED OPTICS y Vol. 38, No. 9 y 20 March 1999
bvious from Figs. 11 and 12. We nevertheless offer
more elaborate approach, which focuses on the ori-

ntations.
From Eq. ~45! an orientation u is a minimum de-

iation orientation exactly when D 5 S, or from Eq.
~23!, uDu 5 S. One such orientation ~Fig. 17! is the
rotation u0 such that u0Du 5 S and u0Eu 5 S~Dm, 0!,
and then all such rotations are given by

u~t! 5 rot~t, S! u0 (54)

5 u0 rot~t, Du!. (55)

Therefore

u~t!Du 5 S, (56)

u~t!Eu 5 S~Dm, t!. (57)

From Fig. 17 or from Eqs. ~23! and ~55!,

ku~t! 5 D~s, t!, (58)

so that s is the angular distance from ku~t! to Du, and
t is the bearing of ku~t! from Du. As t varies, the
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point ku~t! traces out the circle with center Du and
radius s. This circle is the contact circle C 5 C~a, s!,
he zenith locus of the set of minimum deviation ori-
ntations. ~However, the set of minimum deviation
rientations is not a halo-making set unless S 5 6k.!
As seen from the wedge with orientation u~t!, the

alo point is H@u~t!#u~t! 5 Eu, the same for all t. From
space it is H@u~t!# 5 u~t!Eu. Then from Eq. ~57!

H@u~t!# 5 S~Dm, t!, (59)

so that Dm is the angular distance from H@u~t!# to S,
and t is the bearing of H@u~t!# from S. Since Dm is
the minimum deviation, then as t varies, H@u~t!#
races out the circular halo.

Conversely, if u is an orientation such that H~u! 5
S~Dm, t!, so that H~u! is on the circular halo, then Su
5 Du and H~u!u 5 Eu, from Eq. ~45!. Then

uDu 5 S, (60)

uEu 5 S~Dm, t!. (61)

Fig. 18. Above left, contact circle C 5 C~a, s!, with radius s and ce
with zenith locus K will contact the circular halo if and only if K in
ku shown at upper left. Since ku is on C, the halo contacts the ci
lso Fig. 17, which has the same a, s, t, and ku, and see Fig. 12, w
reat circle with pole Pu as shown. Below right, the great circle h

contacts the circular halo. The contact points H and H* with the
C, with corresponding points having the same bearing. This is t
Since a rotation is determined by its values on any
two independent points, in this case Du and Eu, com-

arison of Eqs. ~60! and ~61! with Eqs. ~56! and ~57!
shows that u 5 u~t!. Thus

if H~u! 5 S~Dm, t! then u 5 u~t!. (62)

Before collecting the above results in the Criterion
or Contact, below, let us interpret them more con-
retely in the context of the wooden wedge. This
ime we place two nails in the wedge, with their
eads in the direction of the minimum deviation en-
ry and exit vectors D and E. We orient the wedge

so that one nail—D—is fixed in the direction of the
un, and then we rotate the wedge about the fixed
ail. The resulting wedge orientations are the min-

mum deviation orientations for the particular sun
osition and wedge angle. As the wedge rotates
bout the nail, the other nail—E—traces out the cir-
ular halo. If we were to move our frame to the

Du. For the given wedge angle a and solar zenith angle s, a halo
cts C. Below left, point halo with K consisting of the single point
r halo. The contact point H has the same bearing t as ku. See
has the same a, s, and ku. Above right, same, but now K is the
ith zenith locus K at upper right. Since K intersects C, the halo

lar halo correspond to the intersection points ku and ku9 of K with
me halo as in Fig. 14. The circular halo is the 35° halo.
nter
terse
rcula
hich
alo w
circu
he sa
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wedge, we would see the zenith point rotating about
the fixed nail, tracing out the contact circle. And so
forth.

Criterion for Contact
For fixed wedge angle a # amax and solar zenith angle
s, we write S~t! 5 S~Dm, t! and D~t! 5 D~s, t! ~see Fig.
6!. Then

~i! The halo with zenith locus K contacts the ~inner
oundary of the! circular halo at S~t! if and only if K
ntersects the contact circle at D~t!. More explicitly,
~Dm, t! [ H@U~K!# if and only if D~s, t! [ K.
~ii! If s Þ 0, 180, then the mapping S~t! 3 D~t! is
1–1 correspondence between the circular halo and

he contact circle. The angle t is the angular coor-
inate on both the circular halo and the contact circle,
easured clockwise from the 12:00 position, with the
alo being viewed from inside the celestial sphere.
~iii! If s 5 0 or 180, then the contact circle is just a

oint, and the mapping S~t! 3 D~t! takes all of the
ircular halo onto the single point. Thus when s 5

or 180, if the halo contacts the circular halo, it
ontacts it everywhere.

To prove ~i!, suppose S~t! 5 H~u! for some u in
~K!. Then u 5 u~t! from Eq. ~62! and D~t! 5 ku~t!

5 ku [ K from Eqs. ~58! and ~37!. Conversely, if D~t!
[ K, then ku~t! 5 D~t! [ K, so that u~t! [ U~K! and
then S~t! 5 H@u~t!# [ H@U~K!# from Eq. ~59!. State-
ments ~ii! and ~iii! are properties of the spherical
coordinates shown in Fig. 16.

Two illustrations of the Criterion for Contact are
given in Fig. 18. In the first illustration the zenith
locus K is the one-point set $ku%, with ku as shown in

Fig. 19. Left, cube consisting of triples ~s, s, c!, 0 # s # 180, 0 #

Vector Assumption, with each triple ~s, s, c! representing all halo
ngular distance s from Du. All of the halos on the inner circle in

~80, 30, 90!. The regular tetrahedron having vertices ~0, 0, 0!,
the circular halo. Here the cube is truncated to show the tetrahed
expose the tetrahedron’s c 5 90 section, which consists of great
consists of point halos that contact the circular halo, is the tetrahed
re lines of constant Dt—the half-spread between contact points.

is the bearing of Pu from Du. The horizontal line shows the evol
to 180.
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the upper left diagram, and the corresponding point
halo is at the lower left. Since ku is on the contact
circle, the halo makes contact with its circular halo,
at H, and the points ku and H have the same bearing
t. In the second illustration K is a great circle,
hown in the upper right diagram, and the corre-
ponding great circle halo is at the lower right.
gain the contact points with the circular halo cor-

espond to the intersections of K with the contact
ircle. Incidentally, the two points ku in the right

and left diagrams are identical, so the point halo is a
subset of the great circle halo.

The Criterion for Contact is not restricted to point
halos and great circle halos, since it does not rely on
the Spin Vector Assumption, but in case the assump-
tion does apply, we can say more. Suppose, then,
that we have a halo with zenith locus K 5 K~c, Pu!.
Much can be inferred informally just by looking at the
position of K with respect to the contact circle C, and
we recommend doing so, but we also take the follow-
ing complementary analytic approach:

Let Pu 5 D~s, t!, so that s is the angular distance
from Pu to Du, and t is the bearing of Pu from Du.
From Fig. 16,

Pu 5 ~cos s! Du 1 ~sin s sin t! j 1 ~sin s cos t! Du 3 j.

(63)

ccording to the Criterion for Contact, the halo will
ontact the circular halo at S~t! if and only if D~t! is

on K, that is, if and only if Pu z D~s, t! 5 cos c. From
Eq. ~63! the condition for contact is therefore

cos s cos s 1 sin s sin s cos~t 2 t! 5 cos c. (64)

80, 0 # c # 180. The cube represents halos that satisfy the Spin
ing solar zenith angle s and zenith locus K~c, Pu!, where Pu is at
20, for example, would be represented by the single point ~s, s, c!
, 180, 0!, ~180, 0, 180!, ~0, 180, 180!, consists of halos that contact
and the near upper face of the tetrahedron has been removed to
halos that contact the circular halo. The c 5 0 section, which

bottom edge s 5 s. Right, the c 5 90 section in detail. Contours
bearing of the contact points from the sun is t 5 t 6 Dt, where t
of the contact points for a great circle halo as s increases from 0
s # 1
s hav
Fig.
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t 5 t 6 Dt, (65)

here

Dt~s, s, c! 5 arccos@~cos c 2 cos s cos s!ysin s sin s#.

(66)

Fig. 20. Dependence of contact points on ~s, t!, the D-centered coo
having s 5 0, 30, 60, 90, and t 5 0, 45, . . . , 315. For each halo t
f the direction with bearing t, which is the direction from Du ~s 5

Dt depends only on s, the distance from Du to Pu. See the Conta
The possibilities for contact are summarized in Fig.
19, where the cube consists of triples ~s, s, c! repre-
senting configurations of the two circles C and K,
which have radii s and c, and which have distance s
between their centers. On the side faces of the cube,
sin s sin s 5 0, and the argument of the arccosine in
Eq. ~66! is undefined; Eq. ~64! has solutions t if and
only if cos s cos s 5 cos c, in which case all values of
t are solutions, and the halo contacts the circular halo
everywhere. This is the case where ~s, s, c! is on a

tes of poles Pu ~Fig. 16, left!. Great circle halos are shown for Pu

ntact points are located symmetrically at angle Dt on either side
ter of figure! to Pu. For a given c and S, as here, the half-spread
int Theorem, part ~ii!. @a 5 80.2 ~Dm 5 35! and S 5 10#
rdina
he co
0, cen
ct Po
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side edge of the regular tetrahedron having vertices
~0, 0, 0!, ~180, 180, 0!, ~180, 0, 180!, ~0, 180, 180!.

lsewhere on the faces of the tetrahedron, Dt 5 0 or
80, from Eq. ~66!, and there is exactly one contact
oint. On the top two faces Dt 5 180, and the direc-
ion of the contact point from the sun is therefore
pposite that of Pu from Du. On the bottom faces Dt

5 0, and the direction of the contact point is the same
as that of Pu from Du. At each point within the

Fig. 21. Dependence of contact points on sun elevation
D-centered coordinates ~s, t! 5 ~79, 31!. The halo has two con
S , s, one contact point for S 5 6s, and none otherwise.
symmetrically at angle Dt on either side of the direction with
from Du to Pu. As S decreases from s to 2s, the half-spread D
from 180 to 0 as shown. Here a 5 80.2 ~Dm 5 35!, but the res
of a. Figure 18 shows the same halo for S 5 60.

Fig. 22. Dependence of contact points on wedge angle a. Great
alo has pole Pu with the same D-centered coordinates ~s, t! 5 ~

independent of a. Note, however, that the four poles are not the
572 APPLIED OPTICS y Vol. 38, No. 9 y 20 March 1999
tetrahedron there are two contact points, which from
Eq. ~65! are symmetrically located about the direction
from Du to Pu. Outside the tetrahedron there is no
contact. Again, most of this is also clear informally.
In particular, the faces of the tetrahedron correspond
to tangencies of C with K.

The upper half ~c . 90! of the left-hand diagram in
Fig. 19 can be ignored if desired, since K~c, Pu! 5
K~180 2 c, 2Pu!. In particular, for point halos we

e halo has pole Pu with
points for each S with 2s ,
contact points are located

ing t, which is the direction
he contact points decreases
re essentially independent

halos are shown for wedge angle a 5 28, 60, 80.2, and 90. Each
1!, the same as in Fig. 21. The bearing of the contact points is
e, since D-centered coordinates depend on a. ~S 5 50!
S. Th
tact
The
bear
t of t
ults a
circle
79, 3
sam
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normally assume c 5 0 rather than c 5 180, so that
Pu 5 ku rather than Pu 5 2ku. And the upper half
of the right-hand diagram can be ignored since K~90,
Pu! 5 K~90, 2Pu!.

The following theorem makes explicit some of the
information contained in the figure and in previous
calculations. Most of the theorem can also be veri-
fied geometrically by drawing the contact circle and
the zenith locus. See also Figs. 20–22.

Contact Point Theorem
Let Pu 5 D~s, t!, so that s is the angular distance from
Pu to Du, and t is the bearing of Pu from Du. Let a
# amax.

~i! For a point halo with pole Pu: The halo will
have a contact point for exactly one solar zenith an-
gle, namely, s 5 s. When contact occurs,

~a! if 0 , s , 180, then there is exactly one contact
oint, with bearing t 5 t;
~b! if s 5 0 or 180 ~Pu 5 6Du!, then every point on

the circular halo is a contact point.

~ii! For a great circle halo with pole Pu:

~a! If s Þ 0, 90, 180, then choose Pu to be the pole
of K closest to Du, so that s , 90. Then the halo has
two contact points for each S with 2s , S , s, one
contact point for S 5 6s, and none otherwise. The
earing of the two contact points is t 5 t 6 Dt, with

the half-spread Dt decreasing from 180 to 0 as S
decreases from s to 2s. The half-spread is given
quantitatively in Eq. ~66! and qualitatively by a hor-
izontal line like the one shown in the right-hand di-
agram of Fig. 19.

~b! If s 5 0 or 180 ~Pu 5 6Du!, then the halo does
not contact the circular halo unless S 5 0, in which
case it contacts it everywhere.

~c! If s 5 90 ~K passes through Du!, then the halo
contacts the circular halo for all S. Contact occurs
everywhere on the circular halo if S 5 690, and
otherwise at the diametrically opposite points with
bearing t 5 t 6 90.

Thus the bearing t of contact points is independent
f wedge angle a in the following sense: If, for ex-
mple, two great circle halos have different wedge
ngles but have poles with the same D-centered co-
rdinates ~s, t!, then the range of sun elevations S for

which contact occurs is the same for both halos,
namely, 2s # S # s, and for a given S in this range
he bearing t of the contact points is the same for both

halos, namely, t 5 t 6 Dt ~if s Þ 0, 90, 180!. Thus for
fixed S all great circle halos whose poles Pu have the
same D-centered coordinates share a common skele-
ton of contact points, with only the distance Dm to the
sun depending on a ~Fig. 22!. The amount of flesh—
he noncontact points—on the skeleton will decrease
ith increasing a, until at a 5 amax the entry and exit

egions consist only of the single points D and E,
respectively, and the halo consists only of contact
points, with no flesh. Halos with small a are no
richer in contact points than those with large a.

The D-centered coordinates are natural spherical
coordinates related to the frame of wedge vectors D,
B, D 3 B. This frame is usually a better frame than
A, B, C for studying contact points.

An interesting consequence of the theory is that for
a point halo, knowledge of the contact point and the
relevant solar zenith angle s is enough to determine
the halo. For if ~Dm, t! are the S-centered coordi-
nates of the contact point, then ~s, t! are the
D-centered coordinates of ku. The point ku itself is
then known, since Dm determines Du. The halo is
then known, since K and a are both known, K con-
sisting of the single point ku, and a being known from

m. See the left-hand diagrams in Fig. 18.
For a great circle halo, the two distinct contact

points at a single solar zenith angle s Þ 0, 90, 180, are
enough to determine the halo. The two contact
points together with s determine two intersection

oints of K with C. The intersection points are dis-
tinct, since s Þ 0, 180, and they therefore determine
the great circle K, since they are not antipodal.
Thus K and a are known. See the right-hand dia-
grams in Fig. 18.

H. Halo Transformation Rules

We will see that there are essentially four natural
ways to move a halo shape on the celestial sphere
without deforming it. Rules 1–4, below, show how
these changes arise from changes in the zenith locus
of the halo. Then in Section 3 we will see how the
changes in zenith locus arise in real crystals. Rule 1
is less important than Rules 2–4, since most of us
quite reasonably take it for granted.

Rule 1, Azimuth Change
Leaving the zenith locus K unchanged and rotating
the sun through angle f about the z-axis corresponds
to rotating the halo shape in the same way. That is,

H@U~K!, zrot~f! S# 5 zrot~f! H@U~K!, S#. (67)

Rule 1 is a precise formulation of the idea that the
shape of a halo is essentially independent of solar
azimuth. As we said, most people take it for
granted, and we, too, often ignore the distinction be-
tween zrot~f! H@U~K!, S# and H@U~K!, S#. Logically,
Rule 1 depends on the azimuth invariance of halo-
making sets @Eq. ~29!#.

Rule 2, x-Rotation of a Halo
Replacing K by 2K and rotating the sun 180° about
the x-axis corresponds to rotating the halo shape in
the same way. That is,

H@U~2K!, xrot S# 5 xrot H@U~K!, S#, (68)

where xrot is rotation through 180° about the x-axis.
We say that halos with zenith loci K and K9 are x-

rotations of each other if

H@U~K9!, wS# 5 wH@U~K!, S# for all S, (69)
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where w 5 xrot. That is, the shape of one halo when
the sun is at xrot S, is the same as the shape of the
other when the sun is at S, but rotated 180° about the
x-axis. Rule 2 says that two halos with zenith loci
K and 2K ~and with the same wedge angle! are
x-rotations of each other; see Fig. 23.

If halos with zenith loci K and K9 are x-rotations of
each other, then Rule 1 shows that Eq. ~69! is satis-
fied not only by w 5 xrot but also by w 5 zrot~f! z xrot,
which is the form for a 180° rotation about an arbi-
trary horizontal axis. For example, the shape of one
halo when the sun is at zref S, is the same as the
shape of the other when the sun is at S, but rotated
180° about the point on the horizon below the sun.
~The transformation zref is reflection in the plane z 5
0.! If the shape of a halo is known for sun elevation
S, then the shape of its x-rotation is known for sun
elevation 2S.

Rule 2 can be used to infer halos on the rear hemi-
sphere from halos on the front. From the point halos
in, say, Fig. 35, which have poles on the front hemi-
sphere and have S 5 50, one can infer the point halos
with poles on the rear hemisphere for S 5 250. In
general the rear hemisphere is redundant if one has
the front hemisphere halos for all S. Similarly, all

Fig. 23. Left, halo with the sun at S. Also shown are the
x-rotation when the sun is at xrot S, its y-reflection when t
is at yref S, and its z-reflection when the sun is at zref S. T
halo shapes do not appear in the sky simultaneously. Th
is of the rear of the celestial sphere, seen from inside.
right, the same four halos but with the sun at S. The x-r
is no longer a rotation of the original halo, and the z-reflectio
longer a reflection of the original halo. Below right, zenith
the halos. Here K consists of the single point ku 5 B~30, 24
sets K and yref K are on the front hemisphere, and 2K and
K are on the rear. ~a 5 40, S 5 25!
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negative S are redundant if one has the front and
rear hemisphere halos for all positive S.

Rules 1–4 are proved analytically in the theorem
following their discussion. For some geometric in-
sight into Rule 2, simply observe that, to rotate the
halo point 180° about the x-axis, one does the same
for the sun and the wedge, thus turning the wedge
upside down; the effect on the zenith point as seen
from the wedge is to change its sign. Or one can
examine Fig. 24, left, which shows ku, Su, and H~u,
S!u 5 H~e, Su! @Eqs. ~13! and ~23!# for a typical u; this
is the usual view from the wedge with orientation u.

he orientation v 5 xrot z u satisfies 2kv 5 ku and S*v
5 Su, where S* 5 xrot S. The two configurations
$2kv, S*v, H~e, S*v!% and $ku, Su, H~e, Su!% therefore
coincide as shown. When they are rotated by u and
v to show the view from space as in the right-hand
diagram, then H~v, S*! 5 xrot H~u, S!.

Rule 3, y-Reflection of a Halo
Reflecting both K and the sun in the plane y 5 0
corresponds to reflecting the halo shape in the same
way. That is,

H@U~yref K!, yref S# 5 yref H@U~K!, S#, (70)
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where yref is reflection in the plane y 5 0. This
symmetry is displayed clearly in the halo atlas, Ap-
pendix A.

Halos with zenith loci K and K9 are y-reflections or
left–right reflections of each other if Eq. ~69! is satis-
fied with w 5 yref. Rule 3 says that two halos with
zenith loci K and yref K are y-reflections of each other.

If halos with zenith loci K and K9 are y-reflections
of each other, then Eq. ~69! is satisfied not only by
w 5 yref but also by w 5 zrot~f! z yref, which is the
form for a reflection about an arbitrary vertical plane.
For example, when the sun positions of the two halos
are the same, their shapes are reflections of each
other in the solar vertical.

Fig. 24. Geometry of Rule 2, showing views from the wedge at lef
xrot z u satisfies 2kv 5 ku and S*v 5 Su, where S* 5 xrot S. At le
The right-hand diagram is drawn for the special case where S is

Fig. 25. Geometry of Rule 3, showing views from the wedge at le
yref z u z yref satisfies kv 5 yref ku and Sv 5 yref Su, as shown. At
The orientations u and v differ by a rotation whose axis, as seen fr
y 5 0, so that yref S 5 S.
For geometric insight into Rule 3, refer to the left-
hand diagram in Fig. 25, which shows ku, Su, and
H~u!u 5 H~u, S!u 5 H~e, Su! for a typical wedge
rientation u. For the case shown, where S is in the
lane y 5 0, the orientation v 5 yref z u z yref satisfies
v 5 yref ku and Sv 5 yref Su, and the two configu-

rations $ku, Su, H~e, Su!% and $kv, Sv, H~e, Sv!% are
therefore reflections of each other as shown. When
they are rotated by u and v to show the view from
space as in the right-hand diagram, then H~v! 5 yref
H~u!, as claimed.

The two wedge orientations u and v differ by a
rotation whose axis is the intersection of the normal
plane of the wedge and the plane of the solar vertical,

from space at right. For each orientation u, the orientation v 5
erefore, H~e, S*v! 5 H~e, Su!, and at right, H~v, S*! 5 xrot H~u, S!.
e plane y 5 0.

from space at right. For each orientation u the orientation v 5
therefore, H~e, Sv! 5 yref H~e, Su!, and at right, H~v! 5 yref H~u!.
e wedge, is the solid dot shown on y 5 0. Here S is in the plane
t and
ft, th
in th
ft and
left,

om th
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Table 1. Orthogonal Transformationsa w such that wk 5 6k

1

and whose angle of rotation is twice the angle be-
tween the two planes. This is clear when viewed
from the wedge with orientation u, where the solar
vertical is the great circle through ku and Su, and the
normal plane is y 5 0. The intersection of the two

lanes, giving the axis of rotation, is indicated by a
olid dot in Fig. 25, but not labeled.

ule 4, z-Reflection of a Halo
otating K by 180° about the y-axis and reflecting the

sun in the plane z 5 0 corresponds to reflecting the
halo in the same way. That is,

H@U~yrot K!, zref S# 5 zref H@U~K!, S#. (71)

Halos with zenith loci K and K9 are z-reflections of
each other if Eq. ~69! is satisfied with w 5 zref. Rule
4 says that two halos with zenith loci K and yrot K ~5
2yref K! are z-reflections of each other. Rule 4 can
be used to infer rear hemisphere halos from front
hemisphere halos, much like Rule 2. Rule 4 is a
consequence of Rules 2 and 3.

The concept of z-reflection is subtle. To grasp it,
one should regard halos in the fundamental sense of
Eq. ~18!, so that a halo is not attached to any one
particular sun position. Suppose, then, that a halo
display, with the sun at position S, contains some
given halo. The z-reflection of the halo may well be
present, as will be seen in Section 3. The subtlety is
that at this particular moment, with the sun still at S,
the shape of the z-reflection and that of the original
halo may not be simply related, and in particular are
not apt to be reflections of each other ~Fig. 23, upper
right diagram!. It is the shape of the one halo when
the sun is at S, and the shape of the other if the sun
should happen to pass through the point zref S, that
are reflections of each other.

The concept of x-rotation is similar, but y-reflection
is more straightforward. With the sun at S, the
shape of the y-reflection and the shape of the given
halo are indeed reflections of each other, in the plane

w det w wk K9 @

zrot~f! z e 1 k
zrot~f! z xrot 1 2k
zrot~f! z yref 21 k
zrot~f! z zref 21 2k 2

aSee also Ref. 5.

K9 5

K if wk 5 k and d
2K if wk 5 2k and d

yref K if wk 5 k and d
2yref K if wk 5 2k and d
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of the solar vertical. It is easy to recognize the y-
reflection of a halo.

There is a situation that helps one to think about x-
rotation and z-reflection. The situation is rare, but
it does happen, namely, when sunlight reflects off the
calm water or level ice surface of a lake, and when
there are low level ice crystals in the atmosphere at
the same time. The result is a halo display from a
sun at S and a sun at zref S.

Rules 1–4 are instances of the following theorem.

Theorem
Let w be an orthogonal transformation with wk 5 6k
~see Table 1!. For any subset K of the sphere, let

Then with a fixed,

H@U~K9!, wS# 5 wH@U~K!, S# for all S. (73)

Proof
For each wedge orientation u define the orientation
w9~u! by Eqs. ~14! and ~15!. From Eq. ~17!,

H@w9~u!, wS# 5 wH~u, S!. (74)

For the fourth case in Eq. ~72!,

kw9~u! 5 w9~u!21k 5 yref z u21 z w21k

5 2yref z u21k 5 2yref ku, (75)

so that from Eq. ~37!

w9~u! [ U~2yref K!N u [ U~K!. (76)

Equation ~74! then gives Eq. ~73!. The other three
cases are similar.

No Other Orthogonal Halo Transformations
Could there be other rules similar to Rules 1–4? To
formulate the problem more precisely, we reexamine
the general form of the existing rules, each of which
is characterized by an orthogonal transformation w
which moves the halo shape. The transformation w

~72!# Geometric Description of w

K Rotation about the vertical axis
K 180° rotation about a horizontal axis
K Reflection in a vertical plane
K Reflection in the horizontal plane, followed

by rotation about the vertical axis

5 1 ~e.g., w 5 zrot~f!, Rule 1!
5 1 ~e.g., w 5 xrot, Rule 2!
5 21 ~e.g., w 5 yref, Rule 3!
5 21 ~e.g., w 5 zref, Rule 4!

(72)
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also associates to each wedge orientation u a second
edge orientation w9~u! by Eqs. ~14! and ~15!, and if

U is a set of wedge orientations, then as in Eq. ~74!:

H@w9~U!, wS# 5 wH~U, S!, (77)

where w9~U! 5 $w9~u! : u [ U%. So if a halo shape is
moved without deformation, as specified by w, the
same result can be achieved by using w to move the
sun and the set of wedge orientations.

All of the above is true for any orthogonal trans-
formation w. What is special about the existing four
rules—and what is natural to require of any analo-
gous rules—is that w9~U! is a halo-making set when-
ever U is also, so that Eq. ~77! can be expressed in the
form of Eq. ~73!. Thus our original problem is really
to find all such w. But if we consider the simplest
halo-making set U 5 Zu, for a point halo, then ac-
cording to Eq. ~30! the set w9~U! will be a halo-making
set if and only if Z z w9~Zu! # w9~Zu!, which simplifies
to Zw # wZ. Then z z wk 5 wk for all z in Z.
Taking z Þ e, we conclude that wk 5 6k. The re-
sulting possibilities for w are listed in Table 1. They
are essentially those of Rules 1–4; no other w is pos-
sible.

The orthogonal transformations w satisfying wk 5
6k are exactly those such that Zw 5 wZ. Let us
interpret the condition Zw 5 wZ more concretely, in
the context of a point halo arising in a particular
wedge of a spinning crystal. If the wedge at some
moment has orientation u, then the set of all of its
orientations as the crystal spins is Zu. If at the
same moment another wedge on the crystal has ori-
entation wu ~assume det w 5 1!, then the set of
orientations for the second wedge is Zwu. This is
the meaning given to w in Section 3. Here in the
present subsection, however, in order to move the
halo in the manner specified by w, one attempts to get
the orientations for the second wedge by applying w,
thought of as fixed in space, to each orientation of the
first wedge as it occurs. The result is the set wZu.
For most w this attempt fails—the resulting orienta-
tions are simply not the orientations of the second
wedge, if the wedge is truly fixed in the crystal. But
for w with Zw 5 wZ, the two sets of orientations Zwu
and wZu coincide.

Face Interchange Rule
Rotating K through an angle of 180° about the z-axis
corresponds to interchanging the entry and exit faces
of the wedge. In this case we say that the two halos
are the face interchanges of each other. Such halos
are always associated with each other, although they
need not be simultaneously nonempty. The Face In-
terchange Rule is a consequence of the Wedge
Change Rule, Subsection 3.O.

At first glance the Face Interchange Rule resem-
bles Rules 1–4, because it speaks of a change in the
zenith locus. But it does not give the effect on the
halo that is due to the change, as do Rules 1–4, rather
it tells how the change in zenith locus arises. The
Face Interchange Rule logically belongs in Section 3,
but we need it sooner, as in the following discussion.

When the Spin Vector Assumption is Satisfied
For a halo satisfying the Spin Vector Assumption,
applying a reflection or rotation to K is the same as
applying the same operation to Pu. For such a halo
we can therefore summarize Rules 1–4 and the Face
Interchange Rule as follows: For each halo with
pole Pu there are eight related halos, all with the
ame c and a. The first four are illustrated in Fig.
3.

~i! The given halo, with pole Pu.
~ii! The halo with pole 2Pu. It is the x-rotation of

he given halo.
~iii! The halo with pole yref Pu. It is the

y-reflection of the given halo.
~iv! The halo with pole 2yref Pu 5 yrot Pu. It is

the z-reflection of the given halo.
~v! The halo with pole zrot Pu. It is the face in-

terchange of the given halo.
~vi! The halo with pole 2zrot Pu 5 zref Pu. It is

the x-rotation of the face interchange of the given
halo.

~vii! The halo with pole yref zrot Pu 5 xref Pu. It
is the y-reflection of the face interchange of the given
halo.

~viii! The halo with pole 2yref zrot Pu 5 xrot Pu.
It is the z-reflection of the face interchange of the
given halo.

If the shape of the given halo is known for all S,
then the shapes of halos ~i!–~iv! can easily be found.

ut we know of no simple way of describing the shape
f the face interchange of a halo in terms of the shape
f the given halo. The shapes of halos ~v!–~viii!
herefore, although easily described in terms of each
ther, do not seem to be simply related to those of
alos ~i!–~iv!.
For great circle halos, the halos ~i! and ~ii! are the

ame, since their poles are antipodal and hence their
enith loci coincide. Likewise, halos ~iii! and ~iv! are
he same, ~v! and ~vi! are the same, and ~vii! and ~viii!
re the same.

I. Additional Properties

A halo can have special features if its zenith locus K
is suitably located. Many such features have al-
ready been mentioned. Following are several more.

~i! If K is invariant under the antipodal map ~i.e.,
K 5 K!, then the halo is its own x-rotation. In the

halo atlas illustrations, these halos would be the
great circle halos. If a halo is its own x-rotation,
then changing the sun elevation from S to 2S has the
effect of rotating the halo 180° about the point on the
horizon below the sun ~see, e.g., Fig. 21!. When the
sun is on the horizon, such a halo must be symmetric
with respect to the sun; this is shown beautifully in
Fig. 42.

If a halo is its own x-rotation, and in particular if a
20 March 1999 y Vol. 38, No. 9 y APPLIED OPTICS 1577
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halo is a great circle halo, then its z-reflection is the
same as its y-reflection, since zref 5 yref z xrot. For
a great circle halo with pole Pu the result is easy to
remember by recalling that the relevant poles yrot Pu
and yref Pu are antipodal. Similar results hold for
halos that are their own y-reflections or their own z-
reflections.

~ii! If K is left–right symmetric ~i.e., yref K 5 K!,
then so is the halo itself—it is its own y-reflection.
In the halo atlas these halos would be point halos
with Pu on y 5 0 and great circle halos with Pu on y 5
0 or with Pu 5 ~0, 61, 0!.

~iii! If K is invariant under 180° rotation about the
y-axis ~i.e., yrot K 5 K!, then the halo is its own z-
reflection. In the atlas these halos would be point
halos with Pu 5 ~0, 61, 0! and great circle halos with

u on y 5 0 or with Pu 5 ~0, 61, 0!. If a halo is its
own z-reflection, then changing the sun elevation
from S to 2S has the effect of reflecting the halo
about the plane z 5 0, the plane of the horizon.

hen the sun is on the horizon, such a halo must be
ymmetric with respect to the horizon; some exam-
les appear among the halos in Fig. 42.

~iv! If K is invariant under 180° rotation about the
-axis ~i.e., zrot K 5 K!, then interchanging the entry

and exit faces does not change the halo—the halo is
its own face interchange. In the atlas these halos
would be point halos with Pu 5 ~0, 0, 61! and great
ircle halos with Pu on z 5 0 or with Pu 5 ~0, 0, 61!.

~v! If all of K is on the equator z 5 0 ~upper hemi-
sphere z . 0, lower hemisphere z , 0!, then the
contact points of the halo with the circular halo are on
~above, below! the parhelic circle. This is obvious
from Fig. 11, where if ku is moved to the equator and
f Su and Hu are moved to Du and Eu, then h 5 s, so

that the zenith angle of the contact point H equals the
zenith angle of S. In the atlas the halos with all of K
n the equator would be the point halos with Pu on
he equator and the great circle halos with Pu 5 ~0, 0,
1!, the latter being well shown in Figs. 42–49.

~vi! If all of K is on the great circle x 5 0 ~front
emisphere x . 0, rear hemisphere x , 0!, then the

contact points of the halo with the circular halo are on
~above, below! the subparhelic circle. Again this is
clear from Fig. 11. In the atlas the halos with all of
K on x 5 0 would be the point halos with Pu on x 5

and the great circle halos with Pu 5 ~61, 0, 0!.

~vii! If all of K is on ~within, outside! the great circle
entered at Eu, then the contact points of the halo

with the circular halo are on ~above, below! the hori-
zon.

~viii! If all of K is on ~within, outside! the great
ircle centered at Du, then contact with the circular
alo occurs only when the sun is on ~above, below! the

horizon.
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3. Realizable Halos in the Atlas

Anyone who has thought about halos arising in py-
ramidal crystals is apt to be baffled by the seemingly
endless variety of exotic shapes that these halos can
assume. If the Spin Vector Assumption is satisfied,
however, then we know the variety cannot be endless,
and by examining the halo atlas, Appendix A, we
even have a good idea of what the possibilities are,
before ever looking at the specific crystal shapes and
orientations dictated by real crystals. The possibil-
ities are narrowed further if the crystal shapes and
orientations are known, since the shapes and orien-
tations limit the possible poles. We will now exam-
ine known and plausible halos and see where their
poles appear on the sphere and hence where the halos
appear in the atlas. We start with a crystal together
with one of six crystal orientation classes to be de-
scribed momentarily. A choice of entry and exit
faces for the ray path—hence a specification of a
wedge on the crystal—will determine the halo.

A. Crystal Orientation Classes

The crystal is at first assumed to be a hexagonal
prism. The crystal faces are numbered as in Fig. 26,
with the basal faces being 1 and 2, and the prism
faces being 3, 4, . . . , 8. The outward unit normal to
face i is Ni, and the crystal frame vectors are N3, N1
3 N3, N1. In terms of the crystal frame vectors, the
outward normals are

N1 5 N1, N2 5 2N1, N3 5 N3,

N4 5 ~cos 60! N3 1 ~sin 60! N1 3 N3,

N5 5 ~cos 120! N3 1 ~sin 120! N1 3 N3,

N6 5 ~cos 180! N3 1 ~sin 180! N1 3 N3,

N7 5 ~cos 240! N3 1 ~sin 240! N1 3 N3,

N8 5 ~cos 300! N3 1 ~sin 300! N1 3 N3. (78)

We consider a particular wedge, say wedge i j,
whose entry and exit faces are i and j, respectively.

he entry and exit normals N 5 Ni and X 5 2Nj,
ogether with the spin vector P, determine the pole
u with respect to the wedge. To get Pu informally,

one orients the crystal so that the wedge determined

Fig. 26. Hexagonal prismatic crystal and crystal frame vectors
N3, N1 3 N3, N1.
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Table 2. Spin Vector P and Its Zenith Angle c for the Six Classes of
by N and X is in standard orientation; wherever P
nds up—this is the desired vector Pu. Formally, Pu

is found from Eqs. ~8! and ~21!, with N, X, and P
expressed as linear combinations of the crystal frame
vectors. The spin vector P is found from the crystal
orientation classes.

Following are the six crystal orientation classes.
Refer to Fig. 26 for N3, N1 3 N3, and N1.

~1! Plate, the class of plate orientations; an orien-
ation u is a plate orientation6 if and only if N1~u! 5
. In Eq. ~1! we can therefore take P 5 N1 and c 5

0. Examples of halos arising in plate orientations
would be the common parhelia, with wedge angle a 5
60 and therefore associated with the 22° circular
halo, and the circumzenith arc, with a 5 90 and
associated with the 46° circular halo. ~It is not nec-
essary that the rotations about the spin vector be
achieved in each crystal, only in the population of
crystals as a whole; individual crystals need not be
spinning. Nor is it necessary that the shapes of the
crystals be plates.!

~2! Par, the class of Parry orientations; u is a Parry
orientation if and only if N3~u! 5 k. We can there-
fore take P 5 N3 and c 5 0. Examples would be the
Parry arcs ~a 5 60! and the Parry infralateral and
Parry supralateral arcs ~a 5 90!.

~3! AP, the class of alternate Parry orientations; u
is an alternate Parry orientation if and only if N1~u! 3
N3~u! 5 k. We can therefore take P 5 N1 3 N3 and
c 5 0. Examples would be the alternate Parry arcs
~a 5 60! and the 46° parhelia ~a 5 90!.

~4! Col, the class of column orientations; u is a
olumn orientation if and only if N1~u! is horizontal.

We can therefore take P 5 N1, the same as for plate
rientations, but now c 5 90. Examples would be

the upper and lower tangent arcs of the 22° circular
halo ~a 5 60! and the infralateral and supralateral
arcs ~a 5 90!.

~5! Low, the class of Lowitz orientations; u is a
Lowitz orientation if and only if N1~u! 3 N3~u! is

orizontal. We can therefore take P 5 N1 3 N3, the
same as for alternate Parry orientations, but now c 5
90. Lowitz orientations would occur if the crystal
were spinning about a long diagonal of one of the
hexagonal cross sections, with the spin axis remain-
ing horizontal. Examples would be the Lowitz arcs
~a 5 60! and the upper and lower tangent arcs to the
46° halo ~a 5 90!.

~6! AL, the class of alternate Lowitz orientations; u
is an alternate Lowitz orientation if and only if N3~u!
s horizontal. We can therefore take P 5 N3, the

same as for Parry orientations, but now c 5 90. Al-
ternate Lowitz orientations would occur if the crystal
were spinning about a short diagonal of one of the
hexagonal cross sections, with the spin axis remain-
ing horizontal. Examples would be the alternate
Lowitz arcs ~a 5 60!.

Thus all six crystal orientation classes satisfy the
Spin Vector Assumption. And P 5 N1 for plate and
column orientations, P 5 N3 for Parry and alternate
Lowitz orientations, and P 5 N1 3 N3 for Lowitz and
alternate Parry orientations; see Table 2.

Of the six crystal orientation classes, only the ex-
istence of plate orientations, Parry orientations, and
column orientations is firmly established. There are
no unequivocal published photographs of Lowitz arcs,
although some recent unpublished photographs—the
31 August 1994 Finnish halo display,7 for example—
suggest that Lowitz orientations may also be real.
Observational evidence for alternate Parry orienta-
tions is scanty, and observational evidence for alter-
nate Lowitz orientations is lacking altogether. We
nevertheless include these latter three classes of crys-
tal orientations, for three reasons: First, they seem
plausible, especially if the hexagonal faces of the crys-
tals need not be regular. Second, halo observers,
ourselves included, tend to be afflicted with a kind of
blindness to new halos, so that absence of observa-
tions in the halo record is no proof of nonexistence.
Third and perhaps most important, inclusion of these
three classes gives balance and completeness to the
presentation.

We are now prepared to describe all possible re-
fraction halos arising in hexagonal prismatic crystals
having orientations given by any one of the six ori-
entation classes above. To list the halos, we need
only list the poles ~coordinate vectors! of the spin
vectors N1, N3, and N1 3 N3 with respect to the
wedges of the crystal. For hexagonal prismatic crys-
tals the wedges to be considered are those with wedge
angle a 5 90 or a 5 60. @Wedge angles larger than
amax 5 99.5 do not allow the wedge to pass light.#
We refer to the halos with a 5 90 as 46° arcs, since
they tend to be associated with the 46° circular halo.
Similarly, the halos with a 5 60 are 22° arcs. The
term arc does not imply any particular shape; we use
“arc” and “halo” nearly interchangeably, except that
“46° halo”, for example, usually refers to the 46° cir-
cular halo.

B. The 46° Arcs

Figure 59, Appendix B, is the pole diagram for 46°
arcs; it shows the poles Pu for all 46° arcs. From the
figure and from the halo atlas, imagined to be ex-
tended to cover all sun elevations, one can find the
appearance of any 46° arc. In particular, among the
halos of Figs. 41 and 49 would be all 46° arcs with a
sun elevation of 20°.

Crystal Orientations

Crystal Orientation Class P c

Plate orientations N1 0
Column orientations N1 90

Parry orientations N3 0
Alternate Lowitz orientations N3 90

Alternate Parry orientations N1 3 N3 0
Lowitz orientations N1 3 N3 90
20 March 1999 y Vol. 38, No. 9 y APPLIED OPTICS 1579
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Consider, for example, the circumzenith arc arising
in Parry oriented crystals, whose ray path enters face
3 and exits face 1. Table 2 gives P 5 N3 and c 5 0.
Then with N 5 N3 and X 5 2N1, Eqs. ~8!, ~21!, and
~26! give Pu 5 ~1y√2, 0, 1y√2! 5 B~90, 245!, indicated
by “Par 3 1” in Fig. 59. In Fig. 41, which is the halo
atlas figure for point halos with a 5 90 and S 5 20,
the halo at ~u, d! 5 ~90, 245! is therefore the cir-
cumzenith arc with S 5 20.

As mentioned previously, a less formal and more
enlightening approach to finding Pu can replace the
preceding calculations. Simply orient the crystal so
that the relevant wedge is in standard orientation,
and see where the spin vector falls. For the cir-
cumzenith arc just considered, the relevant wedge is
wedge 3 1. The resulting crystal orientation is
shown in Fig. 27; again Pu 5 ~1y√2, 0, 1y√2! 5 B~90,
245!.

Par 3 1, above, is the pole8 ~coordinate vector! of the
arry spin vector P 5 N3 with respect to the wedge
1. More generally, Par i j is the pole of N3 with

respect to wedge i j. We also refer to the correspond-
ing halo itself as Par i j; it is the halo arising in Parry
orientations and wedge i j. Similarly, Plate i j is the
pole of the plate spin vector P 5 N1 with respect to
wedge i j, and it is also the halo arising in plate
orientations and wedge i j. Similar conventions ap-
ply to the other four crystal orientation classes.

Although the poles in Fig. 59 are labeled for point
halos, they are equally valid for great circle halos.
Since P 5 N1 for both plate and column orientations,
then for each wedge i j the poles Plate i j and Col i j
are the same, and in the figure each pole labeled
“Plate i j” can be relabeled “Col i j.” Similarly, “Par
i j” can be relabeled “AL i j,” and “AP i j” can be
relabeled “Low i j.” Calculations and informal geo-

etric derivations of poles for point halos apply ver-
atim to the corresponding great circle halos. Of

Fig. 27. Left, geometric derivation of the pole Par 3 1, the coordi
The crystal is oriented so that wedge 3 1 is in standard orientation
pole. The pole Par 3 1 is therefore ~1y√2, 0, 1y√2! 5 B~90, 245!.
of the paper, so that the diagram can be more easily related to F
lternate Parry orientations, respectively, have been added. From

and the pole AP 3 1 is ~0, 1, 0! 5 B~0, d!.
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course, to see what the great circle halos look like, one
must refer to Fig. 49, whereas for point halos, refer to
Fig. 41.

Wedges that Make the Same Halo
In Fig. 59 the first table, which is for plate orienta-
tions, lists all 24 wedges having wedge angle a 5 90.
The table groups together wedges that make the
same halo for plate orientations. Thus one finds six
wedges that make the circumzenith arc, namely,
wedges 1 3, 1 4, . . . , 1 8. All six have the same pole,
located at the solid dot labeled “Plate 1 3” on the front
hemisphere. The second table, which is for Parry
orientations, lists the same 24 wedges but groups
together wedges that make the same halo for Parry
orientations. The third table does the same for al-
ternate Parry orientations.

The first table also applies to column orientations,
which give great circle halos, as well as to plate ori-
entations, which give point halos. To get a grouping
of wedges for column orientations, one need only
merge two of the groups for plate orientations that
face each other in the right and left columns.
Whereas for plate orientations the table shows four
groups of wedges and hence four halos, for column
orientations it shows only two groups and hence two
halos—12 wedges are for the infralateral arcs and 12
are for the supralateral arc. The second and third
tables are similar.

To see how the groupings of wedges are arrived at,
one needs to realize, from Eqs. ~18! and ~45!, that two
halos ~with a # amax! are the same if and only if the
two wedge angles are the same and the two sets of
wedge orientations are the same. The latter hap-
pens if and only if the two zenith loci are the same,
that is, if and only if c1 5 c2 and the two poles are the
same, or if c1 1 c2 5 180 and the two poles are
antipodal. Thus point halos ~hence for plate, Parry,

vector of the Parry spin vector P 5 N3 with respect to wedge 3 1.
. 5!, and in this orientation the vector P coincides with the desired
t, same crystal orientation but with the x-axis pointing nearly out
9. The spin vectors N1 and N1 3 N3 for plate orientations and
diagram here, the pole Plate 3 1 is ~21y√2, 0, 1y√2! 5 B~90, 2135!
nate
~Fig
Righ
ig. 5
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and alternate Parry orientations! are the same if and
only if they have the same wedge angles and the same
poles. ~For point halos we have c 5 0, not c 5 180.!
Great circle halos ~hence for column, Lowitz, and al-
ternate Lowitz orientations! are the same if and only
if they have the same wedge angles and the same or
antipodal poles. Thus the construction of the tables
in Fig. 59, as well as the tables in the rest of Appendix
B, is just a computer sorting of wedges according to
wedge angle and pole.

In the tables, any wedge with pole on the front
hemisphere appears in the left column, and any
wedge with pole on the rear appears in the right.
Two wedges with antipodal poles appear on the same
line. According to Rule 2, their halos are x-rotations
of each other. If the halos are great circle halos, they
are the same.

Discussion of the Individual 46° Arcs
We treat the 46° arcs in some detail, both to illustrate
previous results and to serve as a basis for compari-
son later with other arcs. First, the point halos:

Par 8 1, the right Parry supralateral arc. Pu
~5ku! 5 B~30, 245!. We begin with this little
known halo because it is among the 46° arcs that
have the fewest special features and is more typical of
many of the halos to follow. Figure 41 shows the
halo for S 5 20, and a complete atlas would of course
show it for all S. The halo was also used as an
example in Figs. 11 and 15.

The table in Fig. 59 gives the angular distances s1
and s2 from Pu to the nearest and farthest points of
he entry region; s1 5 58 and s2 5 117 as shown in

Fig. 15. According to the Nonempty Halos Theorem,
Subsection 2.F, the halo is therefore nonempty for
58 # s # 117, that is, for 227 # S # 32. The table
also shows Pu to have D-centered coordinates ~s, t! 5
~79, 62!, and so from the Contact Point Theorem,
Subsection 2.G, contact with the 46° circular halo
occurs when s 5 s 5 79, i.e., S 5 11, and the bearing
of the contact point from the sun is t 5 t 5 62.

Par 4 1, the left Parry supralateral arc. Pu 5
~150, 245!. From Rule 3 and Fig. 59, this halo is

the left–right reflection of Par 8 1.

Par 1 7 and Par 1 5, left and right Parry infralat-
eral arcs. Pu 5 B~150, 45! and Pu 5 B~30, 45!.

rom the table the arcs are nonempty when 22 # S
62, and contact with the 46° halo occurs when S 5

8.

Par 5 1 and Par 7 1, unnamed arcs on the rear
emisphere. Pu 5 B~150, 135! and Pu 5 B~30, 135!.

Nonempty when 232 # S # 27, and contact with the
46° halo when S 5 211. Since Par 5 1 is on the same
line in the table as the right Parry supralateral arc
Par 8 1, then it is the x-rotation of the right Parry
supralateral arc and hence the z-reflection of the left
Parry supralateral arc. Similarly, Par 7 1 is the
x-rotation of the left Parry supralateral arc and the
z-reflection of the right Parry supralateral arc. See
Fig. 23, where the four halos have the same poles as
Par 4 1, Par 8 1, Par 5 1, and Par 7 1, but have wedge
angle a 5 40. Either from the Face Interchange
Rule or from the wedge notation, Par 5 1 is the face
interchange of the right Parry infralateral arc Par
1 5. And Par 7 1 is likewise the face interchange of
the left Parry infralateral Par 1 7.

The concepts of x-rotation, y-reflection, and
z-reflection are closely related, with any one of them
expressible in terms of the other two. From here on
we generally state things in terms of y-reflection and
z-reflection.

Par 1 8 and Par 1 4; rear hemisphere halos, the z-
reflections of the Parry infralateral arcs, and the face
interchanges of the Parry supralateral arcs. Pu 5
B~150, 2135! and Pu 5 B~30, 2135!. Nonempty
when 262 # S # 2, and contact with the 46° halo
when S 5 228.

Plate 1 3, Par 3 1, the circumzenith arc. Pu 5
B~90, 245!. From the table, s1 5 58 and s2 5 90, so
the halo is nonempty when 0 # S # 32. And ~s, t! 5
~68, 0!, so contact with the 46° halo occurs when S 5
22, with the contact point directly above the sun, in
the solar vertical. The values of s1, s2, s, and t are
easier to confirm than for the arcs considered above,
because of the symmetric position of Pu with respect
to the entry region. In the analog of Fig. 15 the pole
Pu would now be at B~90, 245!, and S1 and S2 would
change accordingly. The location of S1 is obvious,
and s1 is then found from the figure and from Eq. ~49!
to be 58° ~again!. And s2 5 90, directly from the

gure, but note S2 can now be anywhere on the graz-
ing entry curve. Also, the angular distance from Pu
to Du is s 5 45 1 Dmy2 5 68. ~Most of these results
for the circumzenith arc can be obtained more di-
rectly and more physically; we are trying to show how
the halo fits into the general scheme and how it com-
pares with the Parry supralateral arc considered pre-
viously.! The halo is left–right symmetric according
to ~ii! of Subsection 2.I. The symmetry and the

niqueness of the contact point show again that the
ontact point is in the solar vertical.

Plate 3 2, Par 1 6, the circumhorizon arc. Pu 5
B~90, 45!. Nonempty when 58 # S # 90, and contact
with the 46° halo when S 5 68. Left–right symmetric.
Contact point in the solar vertical but below the sun.

Plate 2 3, Par 6 1; rear hemisphere halo, the
z-reflection of the circumzenith arc, and the face in-
terchange of the circumhorizon arc. Pu 5 B~90,
135!. Nonempty when 232 # S # 0, and contact
with the 46° halo when S 5 222. Left–right sym-
metric. Contact point in the solar vertical.

Plate 3 1, Par 1 3; rear hemisphere halo, the
z-reflection of the circumhorizon arc, and the face
interchange of the circumzenith arc. Pu 5 B~90,
2135!. Nonempty when 290 # S # 258, and con-
20 March 1999 y Vol. 38, No. 9 y APPLIED OPTICS 1581
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tact with the 46° halo when S 5 268. Left–right
symmetric. Contact point in the solar vertical.

AP 1 3 and AP 3 1, left and right 46° parhelia. Pu
5 B~180, d! and Pu 5 B~0, d!. Nonempty when

32 # S # 32, and contact with the 46° halo when S
0. From Fig. 11, suitably modified, these halos lie

ntirely on the parhelic circle: The point ku would
ow be at one of the Bravais poles ~0, 61, 0!, and the
un locus S would coincide with a Bravais circle.
he point Hu would be on the same circle, and hence

h 5 s in the figure, that is, the zenith angle of H
would be the zenith angle of S, as claimed. Either
from the wedge notation or from the Face Inter-
change Rule, the right parhelion is the face inter-
change of the left. Each is its own z-reflection, from
~iii! of Subsection 2.I.

AP 5 1, AP 4 1, etc. The remaining 46° arcs from
alternate Parry orientations.

Great circle halos:

AL 8 1. Pu 5 B~30, 245!, the same as for the right
Parry supralateral arc Par 8 1. @But the antipode

u 5 B~150, 135! is now a pole as well.# We treat
this obscure and probably nonexistent halo first, be-
cause of its relation to the right Parry supralateral
arc and because of its relative lack of special features.
From the table, s1 5 58 and s2 5 117, and since s1 #
90 # s2, then from the Nonempty Halos Theorem the
halo is never empty. Also from the table, the
D-centered coordinates of Pu are ~s, t! 5 ~79, 62!, so
by the Contact Point Theorem the halo contacts the
46° halo when 279 # S # 79, and the contact points
have bearing t 5 62 6 Dt as described in the theorem.

AL 4 1, the y-reflection and z-reflection of AL 8 1.
Pu 5 B~150, 245!.

AL 1 5, the face interchange of AL 8 1. Pu 5 B~30,
5!. Never empty ~K just nicks the entry region near

the left corner!. Contact with the 46° halo when
262 # S # 62.

AL 1 7, the y-reflection and z-reflection of AL 1 5,
and the face interchange of AL 4 1. Pu 5 B~150, 45!.

Col 1 3, AL 3 1; infralateral arcs. Pu 5 B~90,
245!. Never empty; in fact, the lower boundary of
he entry region forms an arc of K. Contact with the

46° halo occurs when 268 # S # 68. The halo is its
own y-reflection ~i.e., it is left–right symmetric! and
hence is its own z-reflection, since for great circle
halos the two properties are equivalent @or use ~iii! of
Subsection 2.I#.

Col 3 2, AL 1 6; supralateral arc. The face inter-
change of the infralateral arcs. Pu 5 B~90, 45!.

onempty when 232 # S # 32, and contact with the
46° halo when 222 # S # 22. The halo is its own y-
reflection and its own z-reflection.
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AL 4 1, AL 8 1, AL 1 7, AL 1 5; the remaining 46°
arcs from alternate Lowitz orientations.

Low 3 1; upper and lower tangent arcs to the 46°
halo. Pu 5 B~0, d!. Also known as Galle’s halo, this

alo is one of five 46° arcs from Lowitz orientations.
ince s 5 90, this halo is an instance of the special
ase ii~c! of the Contact Point Theorem. The halo is
lso its own y-reflection, z-reflection, and face inter-
hange, the latter from ~iv! of Subsection 2.I.

Low 5 1, Low 4 1, Low 1 8, Low 1 7; the remaining
6° arcs from Lowitz orientations.

Where in this list is the 46° circular halo? No-
here, since the halo does not satisfy the Spin Vector
ssumption and hence has no pole. If, however, we
ere representing halos by their zenith loci rather

han by their poles, then the circular halo would be
ncluded, and its zenith locus would be the entire
phere. By analogy with point halos and great circle
alos, the circular halo would be a “sphere halo”.

5 90 is Special
he wedge angle a 5 90, giving rise to the 46° arcs, is
pecial. From Fig. 10 we see that circles ~not shown!
n the inner sphere and centered at point N will
-project to circles on the outer sphere, and each of

he image circles will be in a ~different! plane perpen-
icular to N; this is true regardless of a. For a 5 90,
owever, each of the planes is parallel to X, and so the

mage circles X-project back to circles on the inner
phere. The resulting circles, in fact, all have center
t point N. Thus the composite projection, which
ives the halo point as a function of the sun point
Fig. 3!, takes each circle centered at N to a concentric
ircle, and the same is true for each circle centered at
. This remarkable property is responsible for
any peculiarities of a 5 90 halos. In Fig. 59, for

xample, the Bravais meridian d 5 245 and the up-
per boundary of the entry region are arcs of concen-
tric circles centered at X, thus explaining the
recurring values of s1 in the tables of the figure ~e.g.,
s1 5 58!. And the reason that the circumzenith arc
s indeed a circular arc centered at the zenith is now
vident in the analog of Fig. 11: the sun locus S
ould be a circle centered at ku 5 Nu, and the halo

point locus H would therefore be ~part of ! a concentric
ircle, so the zenith angle h of H would be constant.

Another interesting feature of a 5 90 is that the
circumzenith arc, for example, can arise in two dif-
ferent crystal orientation classes; the circumzenith
arc is Plate 1 3, and it is also Par 3 1. The same of
course holds for the corresponding great circle halo; it
is Col 1 3 and it is also AL 3 1.

C. The 22° Arcs

Figure 55 is the pole diagram for 22° arcs. The cal-
culations used in making the figure are exactly the
same as for the 46° arcs but with N and X now chosen
so that a 5 60 instead of a 5 90. This change pro-

uces new poles and hence new halos. Figures
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33–37 and 42–45 in the halo atlas can be used to find
the appearance of the halos if the sun elevation is 0,
20, 50, or 80°. The results will be approximate, how-
ever, since not all of the poles in Fig. 55 have a cor-
responding halo shown in the atlas figures. The
upper suncave Parry arc, for example, which is at
B~90, 230! and indicated by “Par 3 5” in Fig. 55, is

ot shown in the atlas figures, but it is apt to resem-
le the nearby halo at B~90, 245! in Figs. 33–36. Of
ourse, one can always calculate the arc exactly, us-
ng the methods of Section 1.

We now list the 22° arcs, starting with the point
alos. Of the point halos all but the parhelia are

eft–right symmetric and have their contact points in
he solar vertical ~Rule 3 and the Contact Point The-
rem!.

Plate 3 5 and Plate 3 7, the familiar left and right
2° parhelia. Like the 46° parhelia, they are part of
he parhelic circle. Each is its own z-reflection.

They are face interchanges of each other, and of
course they are left–right reflections of each other.

Par 8 4 and Par 5 7, the upper and lower sunvex
Parry arcs. Each is the z-reflection of the other, and
each is its own face interchange. Contact points
with the 22° halo are on the subparhelic circle, from
~vi! of Subsection 2.I.

Par 3 5 and Par 4 6, the upper and lower suncave
Parry arcs. Par 4 6, being within the entry region, is
a closed loop when the sun is high enough, that is,
when the solar zenith angle s is less than the angular
distance from the pole to the boundary.

Par 7 3 and Par 6 8, unnamed Parry arcs on the
rear hemisphere. Par 7 3 is the z-reflection of Par
4 6 and the face interchange of Par 3 5, and Par 6 8 is
the z-reflection of Par 3 5 and the face interchange of
Par 4 6.

AP 4 6, AP 5 7, AP 6 8, AP 7 3, AP 8 4, and AP 3 5,
the alternate Parry arcs. The most interesting of
these is AP 5 7, with Pu 5 ~1, 0, 0!. Its contact point
with the 22° halo must be on the parhelic circle, from
~v! of Subsection 2.I. But the contact point must also
have bearing t 5 t 5 0, so when contact occurs the
parhelic circle is a circle of radius 11° tangent to the
22° halo at the top. Figure 36 shows the arc when S
5 80, which is very nearly the solar elevation for
contact. AP 8 4 is analogous.

In general, the Parry and alternate Parry arcs are
akin to the circumzenith and circumhorizon arcs and
their rear hemisphere relatives, since all are located
on the Bravais equator y 5 0.

Next are the great circle halos. Each is its
own y-reflection and z-reflection.

Col 3 5, the familiar upper and lower tangent arcs
to the 22° halo. Since s 5 90, this halo is an instance
of the special case ii~c! of the Contact Point Theorem.
In fact, the zenith locus K is the Bravais equator y 5
0, which always intersects the contact circle in the
vertical, and so the halo contacts the 22° halo for all
sun elevations, and it does so at the two points in the
solar vertical. ~With S 5 690, contact occurs every-
where.! The halo is its own face interchange, from
~iv! of Subsection 2.I.

Low 4 6, Low 6 8, Low 5 7, the lower, upper, and
unnamed Lowitz arcs. Low 5 7, with its pole at ~61,
0, 0!, has its contact points located on the subparhelic
circle, from ~vi! of Subsection 2.I. Contact can there-
fore occur only for 211 # S # 11, which is consistent
with s 5 11 in the table in Fig. 55. The halo is its
own face interchange. It has its pole fairly close to
Du, which makes it approximately circular at low sun
elevations, in contrast to halos far from Du. Low 4 6
nd Low 6 8 are face interchanges of each other.
ince the zenith loci of the Lowitz arcs pass through

0, 61, 0!, the Lowitz arcs contain the parhelia.

AL 8 4, AL 3 5, and AL 4 6, the alternate Lowitz
rcs. AL 8 4, with its pole at ~0, 0, 61!, has its
ontact points always on the parhelic circle, from ~v!
f Subsection 2.I; see Figs. 42–45. AL 8 4 is its own
ace interchange, and AL 3 5 and AL 4 6 are face
nterchanges of each other.

The Lowitz and alternate Lowitz arcs are akin to
he infralateral and supralateral arcs, since all are
ocated on the Bravais equator.

Comparison of the pole diagram for the 22° arcs
Fig. 55! with the pole diagrams for, say, the 24° or
5° arcs to be discussed later ~Figs. 57 and 58!, shows
hat the 22° arcs are remarkably simple—their poles
re all on the Bravais equator y 5 0 or at the Bravais
oles ~0, 61, 0!, and their zenith loci are therefore
onveniently located with respect to the entry region
nd the minimum deviation vector. The same is
rue of the 46° arcs that are normally found in the
lassical halo literature. ~The Parry infralateral
nd supralateral arcs, their rear hemisphere and al-
ernate Parry relatives, and the corresponding great
ircle halos are virtually unknown in all but the most

Fig. 28. Pyramidal crystal and crystal frame vectors N3, N1 3 N3,
N1.
20 March 1999 y Vol. 38, No. 9 y APPLIED OPTICS 1583
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recent literature.! Classical halo theorists were
dealt a lucky hand.

D. Nomenclature Defect

Figures 42–45 show that for low sun the halo Col 3 5,
with pole Pu 5 ~0, 61, 0!, consists of two separate
components—the upper tangent arc and the lower
tangent arc—whereas for high sun the halo is a single
component—the circumscribed halo. From our

point of view in this paper, however, there is only one
halo, not two or three, and the existence of the three
names is unfortunate and misleading.

A similar though less serious nomenclature defect
occurs for the infralateral arcs Col 1 3 and for each of
the three Lowitz arcs Low 4 6, Low 6 8, and Low 5 7:
from our point of view each is a single halo, but its
name is plural. In this paper we nevertheless use
the traditional nomenclature.

The disconnection in various halos, as in Col 3 5
for low sun, for example, can be roughly understood
by viewing the creation of the halo from the wedge,
as was done in Fig. 14 for another great circle halo.

E. Pyramidal Crystals

Each of the six crystal orientation classes can apply
not only to prismatic crystals but also to pyramidal
crystals, that is, to crystals having pyramidal faces as
well as, perhaps, prism and basal faces. Pyramidal
crystals thus can give rise to a large number of halos.
These halos provide much of the motivation for this
paper.

To treat halos arising in pyramidal crystals, we
need only add the appropriate normal vectors to the
list given in Eq. ~78!. The face numbering for pyra-
midal crystals is shown in Fig. 28. Basal faces are 1

Table 3. Wedge Angles and Corresponding Circular Halosa

Wedge
Angle a

Radius Dm of
Circular Halo

Name of
Circular Halo

Example of Wedge
~Entry and Exit Faces!

28.0 9.0 9° 18 5
52.4 18.3 18° 18 24
56.0 19.9 20° 18 15
60.0 21.8 22° 8 4
62.0 22.9 23° 1 24
63.8 23.8 24° 18 4
80.2 34.9 35° 18 14
90.0 45.7 46° 1 4

aThese arise in pyramidal crystals having prism faces, basal
faces, and $1, 0, 21, 1% pyramidal faces, as shown in Fig. 28.

N13 5 ~cos 28!N3 1 ~sin 28!N1

N14 5 ~cos 28!N4 1 ~sin 28!N1

N15 5 ~cos 28!N5 1 ~sin 28!N1

. . .
with N1, N2, . . . , N8 as before
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and 2, and prism faces are 3, 4, . . . , 8, as for pris-
atic crystals. Pyramidal faces are 13, 14, . . . , 18

and 23, 24, . . . , 28. As before, the vector Ni is the
outward normal to face i. We assume that the py-
ramidal faces have Miller indices $1, 0, 21, 1% and
hat the crystallographic axial ratio cya is the con-

ventional value 1.63, in which case the pyramidal
faces are inclined at an angle of 28° with the ~princi-
pal! crystal axis. Therefore

For the pyramidal crystal under consideration, Ta-
ble 3 shows the wedge angles a that give rise to halos.
For each a there is a pole diagram in Appendix B.
The calculations of the poles are the same as for halos
from prismatic crystals, but visualizing the results
geometrically is sometimes more difficult.

F. The 9° Arcs

For the 9° arcs the wedge angle is 28° and a typical
wedge is 18 5. The poles for the 9° arcs are shown in
Fig. 52. As usual, the halos can be estimated from
their poles and from the halo atlas; see Fig. 38 for the
point halos and Fig. 46 for the great circle halos, if S
5 20.

We would be surprised if we ever observed halos
arising in pyramidal crystals having alternate Parry
orientations or Lowitz orientations, and from here on
we omit their poles from the diagrams and from the
discussion, in the interest of simplification. Their
poles can always be added to the diagrams if desired,
since the poles Par i j, AP i j, and Plate i j form a
right-handed! frame. Halos from pyramidal crys-
als having alternate Lowitz orientations also seem
ighly unlikely, but their poles are automatically in-
luded, since they coincide with the poles for Parry
rientations.
We have discussed the 22° and 46° arcs in some

etail, and we now regard them as familiar, even
hough some are rare or even nonexistent. From
ere on, when introducing a new halo, we look for a
2° or 46° arc whose pole and wedge angle are close to
hose of the new halo, and whose appearance can
herefore be expected to be similar; when possible,
his seems preferable to treating each new halo in
solation. The 9° arc Par 4 27, for example, should
ear some resemblance to the 46° arc Par 8 1, the
ight Parry supralateral arc, which by now we un-
erstand quite well. Here, however, the resem-
lance should not be overly close, since the poles of
he two arcs are not overly close, and the wedge an-
les are not close at all.

23 5 ~cos 28!N3 1 ~sin 28!N2,
24 5 ~cos 28!N4 1 ~sin 28!N2,
25 5 ~cos 28!N5 1 ~sin 28!N2,

. .
(79)
, N
, N
, N

.
.



N

C
S
r
s
f
T
i
2
l

w

The eight 9° point halos with poles on the Bravais
equator y 5 0 should as a group resemble the 22°
and 46° point halos on the Bravais equator, namely,
the Parry and alternate Parry arcs and the cir-
cumzenith and circumhorizon arcs and their rear
hemisphere relatives. In particular, they are all
left–right symmetric and have their contact points
in the solar vertical. Similarly, the 9° great circle
halos Col 13 6 and Col 3 26 resemble the Lowitz
arcs and the infralateral and supralateral arcs.

The poles in Fig. 52 can be verified geometrically by
putting the relevant wedge in standard orientation.
Figure 29 shows the derivation of the pole Par 3 16.
The result there, incidentally, is an instance of the
more general but simple observation that Par 3 j 5
N0~a! and Plate 1 j 5 N0~a! @Eq. ~10!#, since then P 5

; see Figs. 52, 55, 56, 57, and 59.

rystals are not Wedges
ections 1 and 2 apply to an isolated wedge. Their
esults can be far off the mark when, as in the present
ection, the wedge is part of a crystal having other
aces that can interfere with the prescribed ray path.
he 9° arcs present extreme examples of this shield-

ng of one crystal face by another. Note that in Fig.
8, for example, if the sun vector S makes an angle
ess than 90° with N1, then the light ray cannot travel

the path 3 16. Thus in Fig. 52 the entry region for
the wedge—if the wedge is considered as a part of the
crystal rather than as an isolated wedge—is no
longer the entire entry region as shown but rather
has a bite taken out, the bite being ~at least! the
region inside the great circle centered at the point
Plate 3 16.

Drawing the analog of Fig. 11 for the 9° arc Par
3 16 shows that for very high sun approximately half
of the sun locus is in the missing bite, and the halo
itself is no longer a complete loop, as if the wedge
were isolated, but rather is about half a loop. ~The
entry region for the wedge Par 3 26, which makes the
same halo, should be considered as well, but the re-
gion turns out to be the same.!

Similarly, the 9° arc Plate 3 16 is now empty ~at
least! when the zenith angle s is less than 90,

hereas the values of s1 and s2 in Fig. 52 imply that,
if the wedge were in isolation, the arc would be non-
empty whenever s $ 61. Some of our results, as
here, need to be substantially qualified if applied to
real crystals instead of to isolated wedges.

G. The 18° Arcs

For the 18° arcs the wedge angle is 52.4° and a typical
wedge is 18 24. The poles are shown in Fig. 53, and
the halos are shown in Figs. 39 and 47. The 18° arc
Par 14 28 should be similar to the 22° arc Par 8 4, the
upper sunvex Parry arc, because the poles of the two
halos are identical and their wedge angles are close.
The same is true for the arc Par 15 27 and the lower
sunvex Parry arc. The 18° arcs Par 13 25 and Par
14 26 should resemble the 46° arcs AP 4 1 and AP 1 7,
respectively. The 18° arc Plate 13 27 is not partic-
ularly close to any 22° or 46° arc, but it is almost
identical to the point halo with pole at B~30, 0!, which
is shown in the atlas; see Fig. 39. According to ~v! of
Subsection 2.I, its contact point with the 18° circular
halo is on the parhelic circle. The 18° arc Col 13 27
is its own face interchange, from ~iv! of Subsection 2.I.

H. The 20° Arcs

For the 20° arcs the wedge angle is 56° and a typical
wedge is 18 15. The poles are shown in Fig. 54.
The 20° arc Plate 13 16 is very similar to the 22° arc
Par 8 4, the upper sunvex Parry arc, and Plate 23 26
is likewise similar to the lower sunvex Parry arc.
The 20° arc Par 13 16 is very similar to the 22° arc AP
5 7 and of course also shares its peculiarities. The
20° arcs Par 14 17 and Par 18 15 are very close to the
18° arcs Plate 13 25 and Plate 13 27.

We hope that by now it will go without saying that,
if two point halos are close, then the corresponding
great circle halos are also close. Thus, for example,
Col 13 16 is close to AL 8 4. Incidentally, each of
these halos has its contact point on the parhelic circle,
from ~v! of Subsection 2.I.

I. The 23° Arcs

For the 23° arcs the wedge angle is 62° and a typical
wedge is 1 24. The poles are shown in Fig. 56. The
23° arc Plate 1 23 is close to the 22° arc Par 3 5, the
upper suncave Parry arc, and Plate 13 2 is close to the
lower suncave Parry arc. The 23° arc Par 13 2 is
close to the 22° arc AP 4 6, and the other five 23° arcs
on the Bravais equator also have their near twins
among the 22° arcs. The 23° arcs Par 14 2 and Par
1 25 should be somewhat similar to the 46° arcs Par
8 1 and Par 1 5, the right Parry supralateral and
infralateral arcs, respectively, but the two wedge an-
gles are not especially close. The remaining 23° arcs
are likewise similar to various 46° arcs.
Fig. 29. Geometric derivation of the pole Par 3 16, the coordinate
vector of the Parry spin vector P 5 N3 with respect to wedge 3 16.
The crystal is oriented so that wedge 3 16 is in standard orienta-
tion, and in this orientation the vector P coincides with the desired
pole. The wedge angle is 28°, so face 3 is inclined 14° from the
vertical. The pole Par 3 16 is therefore ~cos 14, 0, sin 14! 5 B~90,
214!, in agreement with the table in Fig. 52.
20 March 1999 y Vol. 38, No. 9 y APPLIED OPTICS 1585
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J. The 24° Arcs

For the 24° arcs the wedge angle is 63.8° and a typical
wedge is 18 4. The poles are shown in Fig. 57. The
24° arc Par 3 25 is close to the 22° arc Par 3 5, the
upper suncave Parry arc, and Par 14 6 is close to the
lower suncave. The 24° arcs Plate 13 7 and Plate
3 27 are somewhat similar to the 46° arcs Par 8 1 and
Par 1 5, the right Parry supralateral and infralateral
arcs. The 24° arc Par 4 28 is not close to any famil-
iar 22° or 46° arc, but it is close to the a 5 60 point
halo with pole at B~60, 290! in the halo atlas; see
Figs. 33–36.

K. The 35° Arcs

For the 35° arcs the wedge angle is 80.2° and a typical
wedge is 18 14. The poles are shown in Fig. 58, and
the halos are shown in Figs. 40 and 48. None of the
poles in Fig. 58 is especially close to poles of 22° or 46°
arcs. Plate 13 17 and Par 18 14 are on the great
circle x 5 0 and so have their contact points on the
subparhelic circle, from ~vi! of Subsection 2.I.

L. Halo Containments in the Pole Diagrams

A point halo is a subset of a great circle halo if their
poles are orthogonal. But the poles Par i j, AP i j,
and Plate i j are always mutually orthogonal, since
they are just the crystal frame vectors N3, N1 3 N3,
N1 as seen from wedge i j. This orthogonality there-
ore creates a wealth of halo containments. Each
air i j gives rise to six containments: The halo

Plate i j is a subset of the halos Low i j and AL i j.
The halo Par i j is a subset of Col i j and Low i j. And
AP i j is a subset of Col i j and AL i j. In Fig. 59, for
example, the infralateral arcs Col 1 3 must contain
all the halos Par 1 3, . . . , Par 1 8, as well as AP
1 3, . . . , AP 1 8. And the circumzenith arc Plate 1 3
must be a subset of each of the halos AL 1 3, AL 1 4,
AL 1 5, as well as Low 1 3, Low 1 4, Low 1 5. And so
forth. In the discussions of the individual halos, we
usually did not mention the containments, but they
were always there.

M. Halo Identification Problems

We have seen several examples of halos having poles
close to one another. If the wedge angles are close as
well, the halos can be difficult to distinguish. To
summarize: The 18° arc Par 14 28, the 20° arc Plate
13 16, and the 22° arc Par 8 4—the upper sunvex
Parry arc—have identical poles and nearly identical
wedge angles, thus making for a complicated region
of sky where identifications must be made with cau-
tion. The 18° arc Par 15 27, the 20° arc Plate 23 26,
and the lower sunvex Parry arc are likewise close.
The 23° arc Plate 1 23 and the 24° arc Par 3 25 are
close to the 22° arc Par 3 5—the upper suncave Parry
arc. The 23° arc Plate 13 2 and the 24° arc Par 14 6
are likewise close to the lower suncave Parry arc.
The 18° arc Plate 13 27 and the 20° arc Par 18 15 are
very close. The 18° arc Par 13 25, the 24° arc Par
13 5, and the 35° arc Par 13 15 are somewhat similar,
although perhaps not so similar as to cause confu-
586 APPLIED OPTICS y Vol. 38, No. 9 y 20 March 1999
sion. The 35° arcs Plate 13 17 and Par 18 14 are
close to each other, as are Plate 23 27 and Par 17 15.

Another potential source of confusion lies in the
many halo containments. For fixed i and j, as ex-
plained earlier, the halo Par i j is always a subset of
Col i j. Even though Par i j is a point halo and Col i j
is a great circle halo, there is the possibility of con-
fusing the two, especially if the sun elevation is close
to that for which the point halo contacts the circular
halo. Among 22° arcs an example would be the
lower sunvex Parry arc Par 5 7 and the upper and
lower tangent arcs Col 5 7; the lower sunvex Parry
arc and the lower tangent arc can be confused for S '
11. Similarly, the halo Plate i j could perhaps be
confused with Low i j for appropriate sun elevations;
an example would be the 22° parhelia Plate 4 6 and
Plate 5 3 and the lower Lowitz arcs Low 4 6, if S ' 0.
The upper Lowitz arcs Low 6 8 are slightly less likely
to be confused with the parhelia, and the unnamed
Lowitz arcs Low 5 7 not at all likely, because of its
proximity to Du.

We do not wish to overstate the identification prob-
lem. When there are two or more competing iden-
tifications for a halo, the presence of other, known
halos is often enough to decide among them. Simple
polarization observations or careful radiance obser-
vations may also be able to decide, as explained in
Refs. 9 and 10. Confusion in the past has often
arisen simply out of ignorance of the multiple possi-
bilities. The lone label at hand got applied.

N. Reality of the Halos

What is the evidence for the existence of odd radius
~Dm Þ 22, 46! halos arising in preferentially oriented
crystals? Some of the published photographs can be
found in Refs. 2 and 11–16. There are many unpub-
lished photographs as well, some spectacular, espe-
cially among the collection of the Finnish Halo
Observers Network. Of the published photographs,
the one by Sturm in Ref. 11, p. 92, is the best. It
shows the 9° arc Plate 3 26, the 24° arcs Plate 3 25
and Plate 3 27, the 35° arcs Plate 23 25 and Plate
23 27, and probably faint 18° arcs Plate 13 25 and
Plate 13 27. Thus the Sturm photo suggests that
plate orientations are a real orientation mode for py-
ramidal crystals. Many other photos, most unpub-
lished, seem to offer confirmation. In addition to the
arcs already mentioned, we find among our Antarctic
and Alaskan photographs the 20° arcs Plate 13 16
and Plate 23 26, the 23° arc Plate 1 23, perhaps the
35° arcs Plate 13 15 and Plate 13 17, and what ap-
pear to be the 18° arcs Plate 13 25 and Plate 13 27,
and perhaps Plate 23 15 and Plate 23 17. These 18°
arcs, however, are just above the horizon, in the con-
fused murk where the low-level crystal swarm is con-
centrated, and the identifications are not certain.

Can column orientations be a real orientation mode
for pyramidal crystals? The photographic evidence
is much weaker than that for plate orientations, but
there is some, mostly unpublished. The best pub-
lished evidence is for the 9° arcs Col 13 6 and Col 3 26
and is from a display photographed by O. Richard
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Norton and shown in Ref. 13. In that display what
appears at first to be the 9° circular halo is in fact
strongly enhanced on the sides, and this enhance-
ment persists and indeed is better shown in several
of Norton’s other photographs of the display.17 We
predict that, with increased awareness, more pho-
tographs of odd radius arcs from column orienta-
tions will be forthcoming. In our crystal samples
we sometimes find columnar crystals with pyrami-
dal ends; sufficient numbers of these crystals, if
large enough, ought to produce the desired arcs.

The case for Parry orientations as an orientation
mode for pyramidal crystals is still weaker, for we
know of no supporting halo photographs whatso-
ever. But we know that Parry orientations can
occur—in Antarctica they are rather common—and
we know that pyramidal crystals occur. We think
that in the best displays from Parry orientations we
will eventually see an odd radius arc from Parry
orientations.

Odd radius arcs from alternate Parry orientations,
or Lowitz orientations, or alternate Lowitz orienta-
tions are quite another matter. As mentioned ear-
lier, we doubt that they will ever be seen.

One thing that is not in doubt is the reality of
pyramidal crystals. They dominate many of our
crystal samples collected at low temperatures.
The crystals are usually too small for the interfacial
angles to be accurately measured and thus to con-
firm our assumptions that the crystallographic ax-
ial ratio is 1.63 and that the pyramidal faces have
Miller indices $1, 0, 21, 1%. The few crystals for

hich the measurements have been made do, how-
ver, support the assumptions; see Refs. 11, 18, and
9. Monte Carlo simulations of odd radius halo
isplays made using the same assumptions are
ood matches for the actual displays, but they are
ot perfect.

O. Crystal Symmetries, Pole Symmetries, and Halo
Symmetries

Wedge Change Rule
Suppose two congruent wedges are located on the
same crystal, and suppose that w is one of the two
orthogonal transformations that take the first wedge
to the second, that is, that take the entry and exit
normals of the first wedge to the respective entry and
exit normals of the second. Suppose also that P is a
ector fixed in the crystal. In what follows, we can,
ithout loss of generality, freeze the crystal at some
oment, so that w becomes a constant matrix and P
constant vector. If at this same moment the frame

f the first wedge is v, then the frame of the second is
9~v! @Eqs. ~14! and ~15!#, and the coordinate vectors

Pv 5 v21P and Pw9~v! 5 w9~v!21P with respect to the
two wedges are related by

wv
21 Pv if det w 5 1, (80)

yref wv
21 Pv if det w 5 21, (81)

Pw9~v! 5
where wv 5 v wv is the matrix of w with respect to
the frame v or, equivalently, wv is the transformation
w when the crystal is oriented so that the first wedge
is in standard orientation. Equations ~80! and ~81!
constitute the Wedge Change Rule. The Wedge
Change Rule gives the relation between poles for dif-
ferent wedges on the same crystal.

Here the vector P is fixed, and Pv depends on v.
The matrix v should be thought of as specifying a
frame on the fixed crystal, rather than as specifying
the frame of a particular wedge as the crystal moves,
as did u in Sections 1 and 2. Equation ~21! is still
correct, however.

Wedge Change Corollary
Again suppose that two congruent wedges are located
on the same crystal and that w is one of the two
orthogonal transformations that take the first wedge
to the second. Let v be the frame for the first wedge,
so that w9~v! is the frame for the second. Suppose
that the Spin Vector Assumption is satisfied, with P
the spin vector, and with Pv and Pw9~v! therefore the
poles with respect to the two wedges.

If det w 5 1, then

~i! Pw9~v! 5 Pv ~the two point halos arising in the
wedges are the same! if and only if wP 5 P. That is,
w should be a rotation about an axis parallel to P.

~ii! Pw9~v! 5 2Pv ~the two point halos are x-rotations of
each other! if and only if wP 5 2P. That is, w should be
a 180° rotation about an axis perpendicular to P.

If det w 5 21, then

~iii! Pw9~v! 5 yref Pv ~the two point halos are
-reflections of each other! if and only if wP 5 P.
hat is, w should be a reflection in a plane parallel to
.
~iv! Pw9~v! 5 2yref Pv ~the two point halos are

z-reflections of each other! if and only if wP 5 2P.
That is, w should be a reflection in a plane perpen-
dicular to P, perhaps followed by a rotation about P.
Equivalently, w should be an inversion, perhaps fol-
lowed by a rotation about P. So if the two wedges
happen to be inversions of each other, then the two
halos are z-reflections of each other.

For the proof of ~iv!, Eq. ~81! gives 2yref Pv 5 Pw9~v!

N 2yref Pv 5 yref wv
21Pv N wvPv 5 2Pv N wP 5

2P. Parts ~i!, ~ii!, and ~iii! are similar.

Halo Symmetries from Crystal Symmetries
A crystal symmetry is an orthogonal transformation
that permutes the face normals of a crystal, and a
pole symmetry is an orthogonal transformation that
permutes poles. According to the Wedge Change
Corollary, a crystal symmetry w satisfying wP 5 6P
induces a pole symmetry, one of the transformations
e, 2e, yref, or 2yref. These four pole symmetries in
turn give rise to halo symmetries—the identity,
20 March 1999 y Vol. 38, No. 9 y APPLIED OPTICS 1587
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x-rotation, y-reflection, or z-reflection, respectively,
as indicated in Fig. 23.

For the crystal shapes of Figs. 26 and 28 and for the
plate spin vector P 5 N1, the induced pole symme-
ries are all of e, 2e, yref, and 2yref, since each of the
our relevant conditions of the Wedge Change Corol-
ary is satisfied for some crystal symmetry w. Actu-
lly it is enough to verify any two of the last three
onditions. But the crystal has mirror planes par-
llel to P, so the condition of part ~iii!—
et w 5 21 and wP 5 P—is satisfied. And the
rystal has a mirror plane perpendicular to P, so the
ondition of part ~iv! is also satisfied. The same con-
lusions hold for the Parry and alternate Parry spin
ectors N3 and N1 3 N3.
What happens if we consider other crystal shapes

r other spin vectors? Often the induced pole sym-
etries will be all of e, 2e, yref, and 2yref, as above,

but it need not always be so. If in Fig. 28 the top tier
of pyramid faces were missing—a common feature—
then for the plate spin vector P 5 N1 the induced pole
symmetries would be just e and yref. Of the halo
ymmetries x-rotation, y-reflection, and z-reflection,

the point halo display from this crystal would be sym-
metric only under y-reflection. This low symmetry
apparently appears in the halo display photographed
by Sturm and reproduced in Ref. 11.

For a more exotic example, consider the orthorhom-
bic disphenoidal crystal whose four face normals are
a unit vector N in the direction of, say, 2i 1 3j 1 4k,
together with xrot N, yrot N, and zrot N. The only
crystal symmetries are the identity and the three
180° rotations about the crystal axes, the crystal axes
588 APPLIED OPTICS y Vol. 38, No. 9 y 20 March 1999
being the xyz-coordinate axes when the crystal is ori-
ented as given. If the crystal were to spin about the
z-axis, then the induced pole symmetries would be e
and 2e. The resulting point halo display would be
symmetric only under x-rotation. There would not
even be left–right symmetry.

In the preceding two examples we spoke as if the
pole symmetries e, 2e, yref, and 2yref could only
arise as symmetries induced from crystal symme-
tries. In those examples this turns out to be true,
but one needs to look at the pole diagram for each
wedge angle to be sure. Consider, for example, a
triangular prism whose cross section is a scalene
triangle and whose spin vector is in the direction of
the prism axis. The only crystal symmetries are
the identity and a reflection in a plane perpendic-
ular to the prism axis, and so the induced pole
symmetries are only e and 2yref. But the poles for
a 5 90 are ~61y=2, 0, 61y=2!, the same as the
plate poles in Fig. 59, and the poles for the other
three wedge angles are ~0, 61, 0!, the same as the

late poles in Fig. 55. All four transformations e,
e, yref, and 2yref are therefore symmetries of the
ole diagrams. The point halo display from this
rystal would give no clue as to the low symmetry of
he crystal. From a halo display, one can some-
imes infer the absence of crystal symmetry, but not
ts presence, at least not without additional as-
umptions.

mm Symmetry of the Pole Diagrams
he group mmm consists of the eight orthogonal

ransformations e, 2e, xref, yref, zref, xrot, yrot, zrot.
Fig. 30. The 24° arcs Col 13 5, Col 13 7, Col 3 25, and Col 3 27, shown individually and then as a composite. The composite is mmm
ymmetric. At this sun elevation it has a total of eight contact points with the 24° circular halo, one pair of contact points coming from
ach of the four component halos. Also see Fig. 57 and recall that the pole for Col i j is the same as that for Plate i j. ~S 5 40!



i
a
s
h
w
d
a

o
t
o
g
r
h
w

m
e
l
a
b
s
z
i

c
c
h

H
T
m
l
o
d
p

s
1
1
F
h
c
3
i
d
t
T
i
e
f
u

For any crystal shape and spin vector, the induced
pole symmetries, together with zrot ~Face Inter-
change Rule!, generate a subgroup of mmm consist-
ng of pole symmetries. For the crystals of Figs. 26
nd 28 and for the Parry, alternate Parry, and plate
pin vectors, the subgroup is all of mmm. For the
emimorphic crystal considered above, the subgroup
ould consist of e, xref, yref, and zrot, and for the
isphenoid the subgroup would consist of e, 2e, zrot,
nd zref.
The “mmm symmetry” of each of the pole diagrams

f Appendix B is obvious; if any one of the eight
ransformations in the group mmm is applied to any
f the plate ~Parry, alternate Parry! poles of the dia-
ram, the result is also a plate ~Parry, alternate Par-
y! pole of the diagram. The pole diagrams for the
emimorphic crystal and the disphenoidal crystal
ould of course exhibit lower symmetry.
Two halos whose poles differ by one of the transfor-
ations e, 2e, yref, or 2yref bear a simple relation to

ach other according to Rules 1–4 ~Fig. 23!. Two ha-
os whose poles differ by zrot are inextricably associ-
ted with each other, by the Face Interchange Rule,
ut we know of no simple relation between their
hapes. The group of pole symmetries generated by
rot and the induced pole symmetries therefore splits
nto two halves, with the halo shapes in each half

Fig. 31. Monte Carlo simulation made using pyramidal crystals
prism faces, but not basal faces; all the faces in Fig. 28 are present
among the many halos here. The tick marks are at 1° intervals.
losely related to each other by Rules 1–4, but with no
lear relation between shapes of halos from different
alves.

alo Displays are Usually Composites
he halos shown in the halo atlas are halos in their
ost rudimentary form. Few of them occur in iso-

ation, and almost every simulation in the atlas must
rdinarily be combined with other simulations in or-
er to simulate a real halo display. Real halo dis-
lays are composites of the atlas halos.
One natural composite is that dictated by mmm

ymmetry. Consider, for example, the 24° arc Col
3 5, whose pole is shown in Fig. 57 ~but labeled Plate
3 5!. The halo itself is shown at the upper left in
ig. 30 for S 5 40. One would not expect to see this
alo in isolation but rather as part of a composite
onsisting of the four 24° arcs Col 13 5, Col 13 7, Col
25, and Col 3 27—the four great circle halos result-

ng from Col 13 5 by mmm symmetry of the pole
iagram. The four poles are shown in Fig. 57, and
he composite halo is shown at the right in Fig. 30.
he composite bears little resemblance to any one of

ts components; it is left–right symmetric and has
ight contact points with the 24° circular halo. In
act, it could easily be mistaken for the circular halo,
nless it were superbly developed.

ng column orientations. The crystals have pyramidal faces and
t faces 1 and 2. With study, the halos of Fig. 30 can be discerned
40, the same as for Fig. 30!
havi
excep
~S 5
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If the reasoning of the preceding paragraph is ap-
plied instead to the 35° arc Col 13 15, one is led to a
composite of only two halos, not four, because of the
location of the pole of Col 13 15 in a coordinate plane.
The composite has four contact points, not eight ~for

77 , S , 77, from Fig. 58!. The same reasoning
pplied to the 20° arc Col 13 16 finds a “composite”
onsisting only of the original arc itself, because of the
pecial location of the pole on two coordinate planes.
he composite therefore has two contact points ~for
80 , S , 80, from Fig. 54!.
Figure 31 is a traditional Monte Carlo simulation

s described in Ref. 11, pp. 132–133. Compared
ith the other simulations in this paper it is highly

ealistic. This is not to say that anyone has ever
een a real display that looks like the simulation.
ut the intensities are presumably correct, given the
ssumptions regarding crystal shapes and orienta-
ions. The simulation is included to make two
oints. First, even the composite simulation of Fig.
0 would be only one ingredient in a real display.
econd, the intensities of the halo atlas simulations
re often quite far off the mark, as can be seen by
omparing Figs. 30 and 31. Probably the least real-
stic aspect of the simulation in Fig. 31 is that the
rystal orientations are assumed to be perfect, with
o allowed departures of the crystal axis from its
ssumed horizontal position—this is done so that the
alos are more easily distinguished from each other.
he simulation is also simplified by the absence of

Fig. 32. Wooden model of the pyramidal crystal in Fig. 28. If the
and below the camera. The wedge 13 5 is in standard orientation.
and the dowel with flag N3 points in the direction of Par 13 5. C
590 APPLIED OPTICS y Vol. 38, No. 9 y 20 March 1999
asal faces on the crystals—otherwise 23° arcs fur-
her complicate the picture.

Figure 51, with a 5 60 and S 5 20, is like Fig. 43
xcept that each halo diagram is now a composite
nalogous to the right-hand diagram in Fig. 30.
sed in conjunction with the pole diagrams of Figs.
3–57, which all have a close to 60, the figure gives
ome indication of the composite 18, 20, 22, 23, and
4° arcs from column orientations for S 5 20.
Figure 50 is similar to Fig. 51 but is for point halos

nstead of great circle halos. Each halo diagram is a
omposite of the eight ~not necessarily distinct! halos
ictated by mmm symmetry. Used in conjunction
ith Figs. 53–57, the figure gives an indication of the

omposite 18, 20, 22, 23, and 24° arcs from plate or
arry orientations for S 5 20.
Many crystal shapes and orientations will lead to

ole diagrams having mmm symmetry, since it is
nough, for example, that the crystal be symmetric
nder inversion and have a mirror plane containing
he spin vector. And for great circle halos, either of
he above two conditions is enough to give mmm
ymmetry.

P. Structure of the Pole Diagrams

To understand the structure of the pole diagrams of
Appendix B we recommend constructing a wooden
crystal shaped as in Fig. 28 and with nails or dowels
appropriately placed to represent the crystal frame
vectors ~Fig. 32!. Then to reconstruct Fig. 59, for

el is at the origin of coordinates, then the x-axis is pointing toward
e dowel with flag N1 therefore points in the direction of Plate 13 5,
re with Fig. 57. The model was made by Jack Corbin.
mod
Th
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example, which is the pole diagram for a 5 90, first
rient the crystal so that the wedge 3 1 is in standard
rientation ~Fig. 27!; the crystal frame vectors N3, N1

3 N3, N1, which are the spin vectors for the Parry,
alternate Parry, and plate orientation classes, respec-
tively, then coincide with the vectors Par 3 1, AP 3 1,
Plate 3 1, which can be recorded in the diagram.
Next rotate the crystal so that wedge 4 1 is in stan-
dard orientation; the crystal frame vectors now coin-
cide with Par 4 1, AP 4 1, Plate 4 1. Continue in this
fashion for all 24 of the a 5 90 wedges, and the pole
diagram is complete.

Induced Pole Symmetries
To understand the pole diagrams in detail, we need to
generalize and to make precise the notion of a pole
symmetry induced by a crystal symmetry w and spin
vector P. As before, we regard the crystal as fixed at
some moment, so that w and P are constants. Sup-
pose a set V consists of wedge frames v1, v2, . . . , vk
for certain wedges on the crystal, and suppose that w9
@Eqs. ~14! and ~15!# maps V to itself. If an orthogonal
ransformation w* satisfies

w*Pv 5 Pw9~v! for all v [ V, (82)

hen w* is an induced pole symmetry20 for V. The
transformation w* is indeed a pole symmetry, of the
poles Pv1

, . . . , Pvk
. It expresses the effect, on poles,

of the crystal symmetry w.
Here we do not distinguish carefully between a

wedge and its wedge frame. We therefore regard V
either as a set of wedge frames or as the set of wedges
themselves.

We have already seen one way that induced pole
symmetries can arise: according to the Wedge
Change Corollary, Subsection 3.O, a crystal sym-
metry w satisfying wP 5 6P induces a pole sym-

etry, one of the transformations e, 2e, yref, or
yref. These transformations are special in that

hey are induced pole symmetries for the set of all
edges of the crystal. They are subtle, however, in

hat the action of w* can be quite different from that
f w.
Induced pole symmetries can arise in a more

traightforward way as follows. If the matrices wv
and wu of w with respect to wedge frames v and u are
the same, then we say that the frames are equivalent
with respect to w. The collection of all wedge frames
is naturally partitioned into equivalence classes of
equivalent frames, and, if det w 5 1, then w9 maps
each equivalence class to itself. Then for each equiv-
alence class V there is an induced pole symmetry w*
for V. This is clear by using the Wedge Change Rule
to rewrite Eq. ~82! as

wv
21Pv if det w 5 1, (83)

yref wv
21Pv if def w 5 1, (84)

w*Pv 5
since w* can be taken to be the common value of wv
for v [ V. So here the action of w* is essentially the
same as that of w, but reversed.

Consider, for example, the crystal of Fig. 26 or Fig.
28 and the 60° rotational symmetry w 5 r whose axis
is R 5 N1 and which takes wedge 3 1 to wedge 4 1.
The six wedges 3 1, 4 1, . . . , 8 1 make up one equiv-
alence class. This can be verified algebraically, but
the wooden crystal model ~Fig. 32! gives more geo-
metric insight. If any one of the six wedges is se-
lected and put in standard orientation, and if the
rotation r then acts on the crystal, the action of r looks
the same, regardless of which wedge was selected—
this is wv. In fact, in each case the action is a 60°
rotation about the axis R3 1, the vector R as seen from
wedge 3 1 ~i.e., the coordinate vector of R with respect
to wedge 3 1!. According to Eq. ~83!, the 60° rotation
bout the same axis but in the opposite sense is an
nduced pole symmetry r* for the set of wedges 3 1,
1, . . . , 8 1. The rotation permutes the poles P3 1,

P4 1, . . . , P8 1, but the rotation itself is independent
of P. It therefore gives information about the struc-
ture of pole diagrams for all P.

For the crystal symmetry r there are, in all, four
equivalence classes of wedges for a 5 90, with each of
the wedges 3 1, 3 2, 1 3, and 2 3 determining a sepa-
rate equivalence class containing six wedges, and
with an induced pole symmetry r* for each equiva-
lence class. The four induced pole symmetries are
60° rotations about R3 1 5 Plate 3 1, R3 2 5 Plate 3 2,

1 3 5 Plate 1 3, and R2 3 5 Plate 2 3 ~Fig. 59!, with
he sense of rotation opposite to that of r.

Finally, if w is a crystal symmetry such that w2 5
e, and if v is any wedge frame of the crystal, then
there are at least two induced pole symmetries of V 5
$v, w9~v!%. For in this case w9 maps V to itself. And
the orthogonal transformation w* need only inter-
change the points Pv and Pw9~v!. Still, we recom-
mend trying some examples.

Reconstructing the Pole Diagrams
Although the pole diagrams of Appendix B may at
first appear chaotic, they have a simple structure.
In each, we can find two antipodal plate poles that are
the centers of a great circle on which six Parry poles
are equally distributed, and from this configuration
we can construct the entire diagram using only mmm
symmetry. In Fig. 52, for example, which is the pole
diagram for the 9° arcs, the antipodal plate poles 13 6
and 23 6 are the centers of the great circle containing
the six Parry poles 13 6, 14 7, . . . , 18 5. Then mmm
ymmetry gives another pair of antipodal plate poles
nd another great circle containing six Parry poles.
A feature of the 9° arcs is that the pole Plate 13 6

ies on exactly one of the coordinate planes x 5 0, y 5
, z 5 0; by mmm symmetry it therefore gave rise to
wo pairs of antipodal plate poles and two great cir-
les containing the Parry poles. But for the 24° arcs
single plate pole, which is now on none of the coor-
inate planes, gives rise to four—not two—pairs of
ntipodal plate poles and four great circles ~Fig. 57!.

And for the 22° arcs, a single plate pole, which is on
20 March 1999 y Vol. 38, No. 9 y APPLIED OPTICS 1591
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two coordinate planes, gives rise to only one pair of
plate poles and one great circle ~Fig. 55!. The 18, 23,
35, and 46° arcs are similar to the 9° arcs—a plate
pole is on one coordinate plane—and the 20° arcs are
similar to the 22° arcs—a plate pole is on two coor-
dinate planes.

To see why all this should be so, and especially to
see which wedges go with which poles, we first con-
struct a pole diagram for the crystal of Fig. 28 but for
an arbitrary spin vector P, starting with a single pair
of poles Pi j and Plate i j. The pole diagram will
ontain poles of P with respect to all wedges having

the same wedge angle as wedge i j. We make use of
three crystal symmetries: the 60° rotation r about
R 5 N1 described above, the reflection m in the plane

erpendicular to N1, and the 180° rotation r about
3. Given any pair of congruent wedges on the crys-

al, we can take the one wedge to the other by apply-
ng r an appropriate number of times, then perhaps
pplying m, and then perhaps applying r ~for the
oment not distinguishing the face interchange of a
edge from itself !. The desired pole diagram can

herefore be constructed from the given pole Pi j by
applying the induced pole symmetries r*, m*, r*,
followed by zrot to account for face interchanges. Af-
ter applying r* successively, we have a diagram with
six poles equally distributed on a circle with center
Ri j 5 Plate i j and with radius equal to the angle b
etween P and R 5 N1. Applying m*, r*, and zrot

then gives a final diagram with 48 ~not necessarily
distinct! poles.

For an arbitrary P, the induced pole symmetries
* and r* may not be simple, but if P 5 N1 ~the plate

spin vector!, then m* 5 2yref and r* 5 2e by the
edge Change Corollary, and so m*, r*, and zrot

enerate mmm, nothing more. And b 5 0, with the
bove circle of radius b collapsing to the point Plate
j. The resulting pole diagram for plate orienta-
ions therefore consists of just the eight ~not neces-
arily distinct! points resulting from Plate i j by
mm symmetry.
If P 5 N3 ~the Parry spin vector!, then m* 5 yref

nd r* 5 e. And b 5 90, so the circle is now a great
ircle centered at Plate i j and containing six equally

distributed Parry poles. Applying m*, r*, and zrot
ives a diagram of four great circles, each containing
ix equally distributed Parry poles, for a total of 24.
he mmm symmetry may not be obvious from this
onstruction, but it is there; one way to see it is to
ote that the original six equally distributed Parry
oles are symmetric under 2e.
The above bounds of 48, 8, and 24 on the number of

poles can be lowered in case a Þ 63.8, for then not all
of r*, m*, r*, and zrot are needed to construct the pole
diagram. Given any two wedges with a 5 60, for
example, we can take the one wedge to the other
using only r and r, even if face interchanges are dis-
tinguished ~Fig. 26 or Fig. 28!. The pole diagram for
an arbitrary P and for the a 5 60 wedges can there-
fore be constructed from a pair of ~a 5 60! poles Pi j
and Plate i j using only r* and r*. The result is a
pole diagram with 12 ~not necessarily distinct! poles,
592 APPLIED OPTICS y Vol. 38, No. 9 y 20 March 1999
ather than 48. The plate pole diagram now has two
oles, rather than eight, and the Parry pole diagram
as six, rather than 24. Since the plate pole dia-
ram must be mmm symmetric, we again see that the
late poles for a 5 60 must lie on a coordinate axis.
imilarly, two Parry poles must lie on a coordinate
xis.
Alternate Parry poles can always be found from the

late and Parry poles, since Par i j, AP i j, and Plate
j are a ~right-handed! frame. The pole diagrams

or an arbitrary P are then easily found. Rather
han struggling with m* and r*, we can use the ex-
sting pole diagrams, since if the coordinates of P
ith respect to the crystal frame vectors N3, N1 3 N3,

N1, are x, y, z, then Pi j 5 x Par i j 1 y AP i j 1 z Plate
i j. For a randomly chosen P and for a given wedge
angle, there are apt to be as many distinct poles as
there are wedges having the given wedge angle.

Section 3 is supposed to be about real and plausible
halos, and in one sense it is. But in another sense, it
is hardly about halos at all; the understanding of
halos was developed in Sections 1 and 2. Section 3 is
about the geometry of crystals, and mostly about the
geometry of the pyramidal crystal in Fig. 28. Its
main theme: Given a vector P fixed in the crystal,
and given a wedge of the crystal, what does P look
like from the wedge? That is all.

Q. Two Summaries

We—Tape and Können—view this article differently,
or at least we emphasize different aspects. We de-
cided that this was not all bad, and that readers
might benefit from two different summaries.

Summary by Tape
We have presented a conceptual framework for the
systematic study of refraction halos arising in pref-
erentially oriented crystals. The framework not
only permits the calculation of shapes for all such
halos, it helps to explain intuitively why the halos
look the way they do. Included as a small part of the
system are all known refraction halos.

Perhaps another look at, say, Fig. 59 will serve as
a partial summary. The sphere in Fig. 59 repre-
sents and thus conveniently organizes the set of point
halos with wedge angle a 5 90, but how does it do so?
It does so by representing orientations—the orthog-
onal matrices with determinant 1. In fact, each
point ku on the sphere represents all of the rotations
~orientations! that take ku to the zenith point k. A
halo’s zenith locus, which is a subset of the sphere, is
a means of specifying the set of wedge orientations
that make the halo; a rotation is a wedge orientation
for the halo if it takes some point in the zenith locus
and makes it vertical. The pole Pu of the halo is in
turn a means of specifying the zenith locus. For a
point halo the zenith locus consists of the single point
ku 5 Pu. So by giving the pole Pu 5 B~30, 245! for
he right Parry supralateral arc Par 8 1, for example,
e are telling how to orient the ~a 5 90! wedge in

order to produce the halo: Starting with the wedge
in standard orientation, for which the wedge vector P
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coincides with Pu, one just tips the wedge so that P
becomes vertical, and then one gives the wedge all
possible rotations about the vertical. Sunlight pass-
ing through these variously oriented wedges makes
the halo. And how do we find Pu for this halo in the
first place? We simply orient the crystal so that the
wedge with entry and exit faces 8 and 1 is in standard
orientation; wherever the ~Parry, in this case! spin
vector P ends up—this is Pu.

The scheme of this paper is based on what at first
may have seemed an unnatural viewpoint: Each ro-
tation acting on a specified wedge of a crystal is re-
garded as starting not with the crystal in some
standard crystal orientation but rather with the crys-
tal oriented so that the wedge is in standard orien-
tation. Whether a given rotation is, say, a Parry
orientation therefore depends on the wedge that is
specified. Thus, for example, Fig. 59 shows that the
Parry orientations for the wedge 8 1 are the same as
the Parry orientations for 4 2 but are disjoint from
the Parry orientations for 3 1. In general, the figure
gives the plate orientations, the Parry orientations,
etc., for each wedge with a 5 90. Figure 55 does the
same for a 5 60, Fig. 52 for a 5 28, etc.

In this spotty review I have not stressed the view of
halo formation as seen from the wedge frame, but it
is this view that lets us see conceptually, rather than
just computationally, why a given halo looks the way
it does. Figure 11 is a good example. Much of the
success of the wedge frame view is due to the rela-
tively simple way that light passes through the
wedge, as indicated in Fig. 3 or Fig. 9.

Summary by Können
We have found a natural halo parameter Pu—the
crystal spin vector expressed in the reference frame of
the refracting wedge—that leads to a classification of
all the halos that result from preferentially oriented
crystals. Based on this parameter we formulate a
comprehensive conceptual theory of halos. The the-
ory is worked out under the crucial but plausible Spin
Vector Assumption, which postulates the spin vector
to be fixed in a halo-generating wedge and to be con-
strained to a constant zenith angle. The wedge is
free to rotate about the spin vector, and the spin
vector is free to rotate about the vertical. We find
under this assumption that the variety in halo shapes
is not endless. The theory creates order in halos and
helps us to understand why halos look the way they
do. See, for example, Figs. 11 and 20.

To organize halos, we introduce a sphere on which
each point represents a value of the vector Pu. I call
the sphere the halo sphere and points on it halo poles.
f wedge angle, refractive index, solar elevation, and
he spin vector’s zenith angle are fixed, then the po-
ition of the halo pole on the halo sphere determines
niquely the shape of the halo arising from the
edge. For two types of refraction halo, namely,

pin vector vertical ~point halos! and spin vector hor-
zontal ~great circle halos!, we calculate halo shapes
hat are due to wedges consisting of ice, using a
scheme that ignores intensity factors but calculates
the shapes correctly. We present the results in the
form of an atlas of “all possible halos”. This atlas
shows, for selected wedge angles and selected solar
elevations, the halo shapes corresponding to repre-
sentative halo poles on the sphere.

The combination of a known crystal shape and a
known crystal orientation class results in a discrete
set of halo poles. For hexagonal ice crystals with
low-index pyramidal faces on both ends and no miss-
ing faces ~Fig. 28!, we calculate the halo poles for all

alo-generating wedge angles ~Table 3!, taking into
onsideration six orientation classes—plate, column,
arry, Lowitz, alternate Parry, and alternate
owitz—and we present in various diagrams the po-
itions of these poles on the halo sphere. The actual
alo display that would show up for a given orienta-
ion class is the composite of all halo shapes in the
tlas represented by all halo poles of that orientation.
lthough the halos in the atlas usually lack symme-

ry with respect to the solar vertical, the actual com-
osites from any of the six orientation classes
onsidered here always bear this symmetry. Fig-
res 50 and 51 show how an atlas of left–right sym-
etric composites might appear.
Applications of the theory extend well beyond those

xplicitly considered in the paper. First, the theory
s capable of organizing halos from ray paths other
han those involving refractions alone, and it can be
pplied to other crystal shapes and to other crystal
rientation classes. Second, the organizing proper-
ies of Pu provide a basis for designing a systematic

nomenclature for halos that are due to preferentially
oriented crystals, based on the special features of
halos arising from poles at certain positions on the
halo sphere. Third, our results provide new tools
for solving the inverse halo problem, namely, the
problem of inferring refractive indices, shapes, and
orientations of halo-making crystals from halo obser-
vations. See, for example, Subsection 2.I and the
Wedge Change Corollary, Subsection 3.O.

The conceptual approach to halos presented in this
paper complements the computational Monte Carlo
ray tracing approach for simulating halos. Both ap-
proaches seem invaluable in reaching real under-
standing of halos from preferentially oriented
crystals of complicated shapes, and likewise both are
invaluable tools for solving inverse halo problems.

Appendix A: The Halo Atlas

A complete halo atlas would contain every halo that
satisfies the Spin Vector Assumption. There would
be a halo for every value of c, Pu, and a, and the
ppearance of each halo would be illustrated for ev-
ry sun elevation S. In this appendix halos are
hown only for c 5 0 and c 5 90 and for selected

values of Pu, a, and S. The resulting atlas is obvi-
usly far from complete, but it is enough to suggest
hat a more complete version might look like. The

ayout in the halo atlas figures ~Figs. 33–51! is that of
ig. 7, right.
20 March 1999 y Vol. 38, No. 9 y APPLIED OPTICS 1593
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Fig. 33. Point halos ~c 5 0! with wedge angle a 5 60 and sun elevation S 5 0. The corresponding circular halo is the common circular
alo, with radius Dm 5 22. Halos are shown for the 27 poles Pu shown in Fig. 7, all of which are on the front hemisphere. In the halo

diagrams the inner circle is the circular halo, and the line within it is part of the parhelic circle, which is included as a reminder of sun
elevation. Some halos can be empty, depending on sun elevation.
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Fig. 34. Point halos with wedge angle a 5 60 ~Dm 5 22! and sun elevation S 5 20. Same as Fig. 33 except for S.
20 March 1999 y Vol. 38, No. 9 y APPLIED OPTICS 1595
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Fig. 35. Point halos with a 5 60 ~Dm 5 22! and S 5 50. Same as Figs. 33 and 34 except for S.
596 APPLIED OPTICS y Vol. 38, No. 9 y 20 March 1999



Fig. 36. Point halos with a 5 60 ~Dm 5 22! and S 5 80. Same as Figs. 33–35 except for S. The small circle in each halo diagram is
the parhelic circle, which for the sun elevation here has a radius of only 10°.
20 March 1999 y Vol. 38, No. 9 y APPLIED OPTICS 1597
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Fig. 37. Point halos with a 5 60 ~Dm 5 22! and S 5 20, and with poles Pu on the rear hemisphere ~x # 0!. Compare Fig. 34, which shows
alos with poles on the front hemisphere ~x $ 0!.
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Fig. 38. Point halos with wedge angle a 5 28 ~Dm 5 9! and sun elevation S 5 20. Same as Fig. 34 except for a.
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Fig. 39. Point halos with a 5 52.4 ~Dm 5 18! and S 5 20. Same as Figs. 34 and 38 except for a.
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Fig. 40. Point halos with a 5 80.2 ~Dm 5 35! and S 5 20. Same as Figs. 34, 38, and 39 except for a.
20 March 1999 y Vol. 38, No. 9 y APPLIED OPTICS 1601
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Fig. 41. Point halos with a 5 90 ~Dm 5 46! and S 5 20. Same as Figs. 34 and 38–40 except for a.
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Fig. 42. Great circle halos ~c 5 90! with wedge angle a 5 60 ~circular halo radius Dm 5 22! and sun elevation S 5 0.
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Fig. 43. Great circle halos with a 5 60 ~Dm 5 22! and S 5 20. Same as Fig. 42 except for S.
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Fig. 44. Great circle halos with a 5 60 ~Dm 5 22! and S 5 50. Same as Figs. 42 and 43 except for S.
20 March 1999 y Vol. 38, No. 9 y APPLIED OPTICS 1605
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Fig. 45. Great circle halos with a 5 60 ~Dm 5 22! and S 5 80. Same as Figs. 42–44 except for S. The small circle in each halo diagram
s the parhelic circle, which for the sun elevation here has a radius of only 10°.
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Fig. 46. Great circle halos with wedge angle a 5 28 ~Dm 5 9! and sun elevation S 5 20. Same as Fig. 43 except for a.
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Fig. 47. Great circle halos with a 5 52.4 ~Dm 5 18! and S 5 20. Same as Figs. 43 and 46 except for a.
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Fig. 48. Great circle halos with a 5 80.2 ~Dm 5 35! and S 5 20. Same as Figs. 43, 46, and 47 except for a.
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Fig. 49. Great circle halos with a 5 90 ~Dm 5 46! and S 5 20. Same as Figs. 43 and 46–48 except for a.
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Fig. 50. Point halos with a 5 60 ~Dm 5 22! and S 5 20. Same as Fig. 34 except that here each simulation, located at Pu, is the
mmm-symmetric composite consisting of the halos with poles 6Pu, 6yref Pu9, 6zref Pu, and 6xrot Pu. For each halo in the simulation,
he x-rotation, the y-reflection, the z-reflection, and the face interchange are also present, although not necessarily nonempty at the given
un elevation. It is the composite, rather than any of the components separately, that would be seen in most real halo displays.
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Fig. 51. Great circle halos with a 5 60 ~Dm 5 22! and S 5 20. Same as Fig. 43 except that here each simulation, located at Pu, is the
mm-symmetric composite consisting of the halos with poles Pu, yref Pu, zref Pu, and xrot Pu. For each halo in the simulation, the

x-rotation, the y-reflection, the z-reflection, and the face interchange are also present, although not necessarily nonempty at the given sun
elevation. The x-rotation of a great circle halo, however, is the halo itself, and the z-reflection is the same as the y-reflection. It is the
composite, rather than any of the components separately, that would be seen in most real halo displays.
612 APPLIED OPTICS y Vol. 38, No. 9 y 20 March 1999
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Appendix B: The Pole Diagrams

In this appendix we give Parry, alternate Parry, and
plate poles for all relevant wedges of the pyramidal
crystal of Fig. 28. The poles are the coordinate vec-
tors of the Parry, alternate Parry, and plate spin
vectors N3, N1 3 N3, N1 ~the crystal frame vectors!
with respect to the various wedges. Each pole, to-
gether with the zenith angle c of the spin vector and
the wedge angle a, determines a halo. Parry poles
and c 5 0 ~c 5 90! determine halos from Parry ~al-
ternate Lowitz! orientations. Alternate Parry poles
and c 5 0 ~c 5 90! determine halos from alternate
Parry ~Lowitz! orientations. Plate poles and c 5 0
~c 5 90! determine halos from plate ~column! orien-
ations. The alternate Parry poles are given explic-
tly only in Figs. 55 and 59, but they are easily
nferred from the plate and Parry poles.

Each figure shows the poles for wedges having a
xed wedge angle a. Each pole is shown as a solid or
pen dot on the sphere and is labeled with its spin
ector, either plate or Parry, and with its wedge i j.
or each spin vector and hence for each crystal ori-
ntation class, a table lists the wedges and poles, with
he poles given in Bravais coordinates ~u, d!.

edges with the same pole and hence that make the
ame point halo are grouped together within each
able. In addition, wedges with antipodal poles are
ocated on the same line in the table. Their halos
re x-rotations of each other, and if the halos are

great circle halos, they are the same halo. Each
group of wedges making the same great circle halo
therefore consists of two groups of wedges for point
halos, one group from the left column of the table, the
other from the right column and facing the first.
The tables also give s1 and s2, used in the Nonempty
Halos Theorem, Subsection 2.F, to find the range of
sun elevations for which a halo is nonempty, and they
give s and t, used in the Contact Point Theorem,

ubsection 2.G, to find contact points with the circu-
ar halo.

The front hemisphere poles in each table are ar-
anged in order of decreasing u and then increasing d.
eading the left column from top to bottom therefore

orresponds to scanning each Bravais circle from top
o bottom ~increasing d! but scanning the front hemi-
phere as a whole from left to right ~decreasing u!.
eading the right column from top to bottom corre-
ponds to scanning each Bravais circle from bottom to
op but scanning the rear hemisphere as a whole from
ight to left.

The Bravais coordinate grid shown in each dia-
ram is the same as in Fig. 7, with Bravais circles u

0, 30, 60, . . . , 180, and Bravais meridians d 5
135, 290, 245, . . . , 180. The heavy curve on the

ront hemisphere is the boundary of the entry region,
nd the “3” is the minimum deviation vector Du.

Most of the figures were made with MATHEMATICA.
This research was supported in part by National Sci-
ence Foundation grant OPP-9419235.
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Fig. 52. Poles of 9° arcs ~a 5 28!. There are four arcs from plate orientations and hence two from column orientations. There are twelve
arcs from Parry orientations and hence six from alternate Lowitz orientations. For S 5 20 the appearance of each 9° arc having a pole
on the front hemisphere can be estimated from Figs. 38 and 46.
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Fig. 53. Poles of 18° arcs ~a 5 52.4!. For S 5 20 the appearance of each 18° arc having a pole on the front hemisphere can be estimated
from Figs. 39 and 47.
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Fig. 54. Poles of 20° arcs ~a 5 56!. For S 5 0, 20, 50, and 80, the appearance of each 20° arc having a pole on the front hemisphere can
e estimated from Figs. 33–36 and 42–45, which all have a 5 60 ' 56.
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Fig. 55. Poles of 22° arcs ~a 5 60!. Halo names are given when they exist, with names in parentheses referring to great circle halos and
the remaining names referring to point halos. For S 5 0, 20, 50, and 80, the appearance of each 22° arc having a pole on the front
hemisphere can be estimated from Figs. 33–36 and 42–45.
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Fig. 56. Poles of 23° arcs ~a 5 62!. For S 5 0, 20, 50, and 80, the appearance of each 23° arc having a pole on the front hemisphere can
e estimated from Figs. 33–36 and 42–45, which all have a 5 60 ' 62.
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Fig. 57. Poles of 24° arcs ~a 5 63.8!. For S 5 0, 20, 50, and 80, the appearance of each 24° arc having a pole on the front hemisphere
can be estimated from Figs. 33–36 and 42–45, which have a 5 60 ' 63.8. The tables are continued on the following page.
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Fig. 57. Continued from the preceding page.
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Fig. 58. Poles of 35° arcs ~a 5 80.2!. For S 5 20 the appearance of each 35° arc having a pole on the front hemisphere can be estimated
from Figs. 40 and 48.
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Fig. 59. Poles of 46° arcs ~a 5 90!. Here halo names are given when they exist, with names in parentheses referring to great circle halos
and the remaining names to point halos. For ( 5 20 the appearance of each 46° arc having a pole on the front hemisphere can be found
from Figs. 41 and 49. The tables are continued on the following page.
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Appendix C: Glossary of Notation

A, Au,
B, Bu,
C, Cu Wedge frame vectors. Eqs. ~8!, ~21!, and

Fig. 4.
D, Du Minimum deviation entry vector. Eqs.

~42!, ~43!, ~21!, and Fig. 9.
E, Eu Minimum deviation exit vector. Eqs.

~44!, ~21!, and Fig. 9.
H, Hu Halo point. Eqs. ~11!, ~21!, and Figs. 3

and 9.
k, ku Zenith vector, k 5 ~0, 0, 1!. Eq. ~21!.

N, Nu Outward unit normal to entry face of
wedge. Figs. 4 and 5.

Fig. 59. Continued
N0 Outward unit normal to entry face of
wedge in standard orientation. Nu 5
N0. Eq. ~10! and Fig. 5.

N1, N2, N3, . . . Outward unit normals to crystal faces 1,
2, . . . Eqs. ~78! and ~79!.

P, Pu Spin vector. Eqs. ~1!, ~21!, and Fig. 1.
The point Pu is the pole.

pr Projection. Eq. ~2!.
S, Su Sun vector. Also see Eq. ~21!.
Sn~u! Point of lower boundary of entry region.

Gives grazing entry. Eq. ~50!.
Sx~u! Point of upper boundary of entry region.

Gives grazing exit. Eq. ~49!.
T Light point for ray within the wedge.

Eq. ~6! and Figs. 2 and 3.

the previous page.
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R

1

Vu Coordinate vector of a vector V with re-
spect to the frame u. Eqs. ~21!, ~23!, and
Fig. 6.

X, Xu Inward unit normal to exit face of wedge.
Figs. 4 and 5.

X0 Inward unit normal to exit face of wedge
in standard orientation. Xu 5 X0. Eq.
~10! and Fig 5.

AL Alternate Lowitz orientations. Subsec-
tion 3.A.

AP Alternate Parry orientations. Subsec-
tion 3.A.

B~u, d! Point with Bravais ~B-centered! coordi-
nates ~u, d!. Eq. ~26!,

C Contact circle. Fig. 18.
D~s, t! Point with D-centered coordinates ~s, t!.

Fig. 16.
d Deviation projected onto the normal

plane. Fig. 9.
e Identity matrix.

H Halo point locus. Subsection 2.C and
Fig. 11.

K Zenith locus. Subsection 2.A and Fig.
14.

K~c, Pu! Circle with angular radius c and center
Pu. Subsection 2.A.

n Index of refraction for ice. Eq. ~6!. We
take n 5 1.31.

rot~f, Y! Rotation through angle f about the point
Y. Subsection 2.G.

S Sun locus. Subsection 2.C and Fig. 11.
S2 Unit sphere

S~D, t! Point with S-centered ~sun-centered! co-
ordinates ~D, t!. Fig. 16.

SO~3! Group of all orientations ~rotations!—
orthogonal matrices with determinant 1.
Subsection 2.A.

~s, t! D-centered coordinates. Fig. 16.
s1 and s2 Angular distances from Pu to the nearest

and farthest points of the entry region.
Subsection 2.F.

U~K! Halo-making set with zenith locus K.
Subsection 2.A.

wedge i j Wedge with entry face i and exit face j.
Face numbers are as in Figs. 26 and 28.

w9~v! Frame of the wedge whose entry and exit
normals are w~N! and w~X!, where N and
X are the entry and exit normals of a
wedge with frame v. Eqs. ~14! and ~15!.

w* Pole symmetry induced by the crystal
symmetry w and spin vector P. Eq.
~82!.

xref Reflection in the plane x 5 0; yref and
zref are analogous.

xrot Rotation through 180° about the x-axis;
yrot and zrot are analogous.

xrot~f! Rotation through angle f about the x-
axis; yrot~f! and zrot~f! are analogous.

x-rotation Eq. ~69! with w 5 xrot.
y-reflection Eq. ~69! with w 5 yref.
z-reflection Eq. ~69! with w 5 zref.
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Z Group of rotations about the z-axis.
Subsection 2.A.

Zu Coset containing u. Eq. ~31!.
a Wedge angle, the angle between the en-

try and exit faces of the wedge. Fig. 5.
amax Largest wedge angle that will allow light

to pass through a wedge. Subsection
2.B.

D Deviation between S and H. Eq. ~40!
and Fig. 9.

Dm Minimum value of D. Eq. ~41! and Fig.
17.

~D, t! S-centered coordinates. Fig. 16.
Dt Half-spread of contact points. Eq. ~66!

and Fig. 20.
h Zenith angle of halo point H. Fig. 11.

~u, d! Bravais ~B-centered! coordinates. Eq.
~26!.

l See Eq. ~3!.
S Sun elevation.
s Zenith angle of sun S. Hence s 5 90 2

S. Fig. 11.
t Bearing of the halo point from the sun.

Fig. 11.
tvar Variation in the bearing t for a given halo

and a given S.
c Zenith angle of spin vector. Eq. ~1! and

Fig. 1.
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