Empirical estimation of the effect of urban heat advection on the temperature series of De Bilt (the Netherlands)
Published in Int. J. Climatology 23, 829-845, doi:10.1002/joc.902 in 2003
T. Brandsma, G. P. Können, and H. R. A. Wessels
The influence of urban heat advection on the temperature time series of the Dutch GCOS station De Bilt has been studied empirically by comparing the hourly meteorological observations (1993-2000) with those of the nearby (7.5 km) rural station at Soesterberg. Station De Bilt is in the transition zone (TZ) between the urban and rural area, being surrounded by three towns, Utrecht, De Bilt and Zeist. The dependence of the hourly temperature differences between De Bilt and Soesterberg on wind direction has been examined as a function of season, day- and night-time hours and cloud amount. Strong dependence on wind direction was apparent for clear nights, with the greatest effects (up to 1 °C on average) for wind coming from the towns. The magnitude of the effect decreased with increasing cloudiness. The analysis suggests that most of the structure in the wind direction dependence is caused by urban heat advection to the measuring site in De Bilt. The urban heat advection is studied in more detail with an additive statistical model. Because the urban areas around the site expanded in the past century, urban heat advection trends contaminate the long-term trends in the temperature series (1897-present) of De Bilt. Based on the present work, we estimate that this effect may have raised the annual mean temperatures of De Bilt by 0.10 ± 0.06 °C during the 20th century, being almost the full value of the present-day urban heat advection. The 0.10 ± 0.06 °C rise due to urban heat advection corresponds to about 10% of the observed temperature rise of about 1.0 °C in the last century.